Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
- URL: http://arxiv.org/abs/2504.08051v1
- Date: Thu, 10 Apr 2025 18:10:34 GMT
- Title: Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
- Authors: Tony Shen, Seonghwan Seo, Ross Irwin, Kieran Didi, Simon Olsson, Woo Youn Kim, Martin Ester,
- Abstract summary: We introduce Compositional Generative Flows (CGFlow), a novel framework that extends flow matching to generate objects in compositional steps.<n>We build upon the theoretical foundations of generative flow networks (GFlowNets), enabling reward-guided sampling of compositional structures.<n>We apply CGFlow to synthesizable drug design by jointly designing the molecule's synthetic pathway with its 3D binding pose.
- Score: 3.7359205703290024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many generative applications, such as synthesis-based 3D molecular design, involve constructing compositional objects with continuous features. Here, we introduce Compositional Generative Flows (CGFlow), a novel framework that extends flow matching to generate objects in compositional steps while modeling continuous states. Our key insight is that modeling compositional state transitions can be formulated as a straightforward extension of the flow matching interpolation process. We further build upon the theoretical foundations of generative flow networks (GFlowNets), enabling reward-guided sampling of compositional structures. We apply CGFlow to synthesizable drug design by jointly designing the molecule's synthetic pathway with its 3D binding pose. Our approach achieves state-of-the-art binding affinity on all 15 targets from the LIT-PCBA benchmark, and 5.8$\times$ improvement in sampling efficiency compared to 2D synthesis-based baseline. To our best knowledge, our method is also the first to achieve state of-art-performance in both Vina Dock (-9.38) and AiZynth success rate (62.2\%) on the CrossDocked benchmark.
Related papers
- FLOWR: Flow Matching for Structure-Aware De Novo, Interaction- and Fragment-Based Ligand Generation [40.624711262861666]
FLOWR is a novel framework for the generation and optimization of three-dimensional structures.
FLOWR surpasses current state-of-the-art diffusion- and flow-based methods in terms of PoseBusters-validity, pose accuracy and interaction recovery.
arXiv Detail & Related papers (2025-04-14T17:18:09Z) - Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detection aims to pinpoint prominent objects within aligned pairs of visible and thermal infrared images.<n>Traditional encoder-decoder architectures may not have adequately considered the robustness against noise originating from defective modalities.<n>We propose the ConTriNet, a robust Confluent Triple-Flow Network employing a Divide-and-Conquer strategy.
arXiv Detail & Related papers (2024-12-02T14:44:39Z) - SemlaFlow -- Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching [43.56824843205882]
Semla is a scalable E(3)-equivariant message passing architecture.<n>SemlaFlow is trained to generate a joint distribution over atom types, coordinates, bond types and formal charges.<n>Our model produces state-of-the-art results on benchmark datasets with as few as 20 sampling steps.
arXiv Detail & Related papers (2024-06-11T13:51:51Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
We introduce FoldFlow-2, a novel sequence-conditioned flow matching model for protein structure generation.<n>We train FoldFlow-2 at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works.<n>We empirically observe that FoldFlow-2 outperforms previous state-of-the-art protein structure-based generative models.
arXiv Detail & Related papers (2024-05-30T17:53:50Z) - SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints [16.21161274235011]
We introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and purchasable reactants to sequentially build new molecules.
By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities.
arXiv Detail & Related papers (2024-05-02T10:15:59Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - SGTR+: End-to-end Scene Graph Generation with Transformer [42.396971149458324]
Scene Graph Generation (SGG) remains a challenging visual understanding task due to its compositional property.
Most previous works adopt a bottom-up, two-stage or point-based, one-stage approach, which often suffers from high time complexity or suboptimal designs.
We propose a novel SGG method to address the aforementioned issues, formulating the task as a bipartite graph construction problem.
arXiv Detail & Related papers (2024-01-23T15:18:20Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - Harmonic Self-Conditioned Flow Matching for Multi-Ligand Docking and Binding Site Design [29.972698307121675]
FlowSite extends this flow model to jointly generate a protein pocket's discrete residue types and the molecule's binding 3D structure.
We show HarmonicFlow improves upon state-of-the-art generative processes for docking in simplicity, generality, and average sample quality.
arXiv Detail & Related papers (2023-10-09T14:45:33Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
We introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3mathrmD$ rigid motions.
Our family of FoldFlowgenerative models offers several advantages over previous approaches to the generative modeling of proteins.
arXiv Detail & Related papers (2023-10-03T19:24:24Z) - AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation [80.33846577924363]
We present All-Pairs Multi-Field Transforms (AMT), a new network architecture for video framegithub.
It is based on two essential designs. First, we build bidirectional volumes for all pairs of pixels, and use the predicted bilateral flows to retrieve correlations.
Second, we derive multiple groups of fine-grained flow fields from one pair of updated coarse flows for performing backward warping on the input frames separately.
arXiv Detail & Related papers (2023-04-19T16:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.