X-DECODE: EXtreme Deblurring with Curriculum Optimization and Domain Equalization
- URL: http://arxiv.org/abs/2504.08072v1
- Date: Thu, 10 Apr 2025 18:59:26 GMT
- Title: X-DECODE: EXtreme Deblurring with Curriculum Optimization and Domain Equalization
- Authors: Sushant Gautam, Jingdao Chen,
- Abstract summary: Restoring severely blurred images remains a significant challenge in computer vision.<n>This paper introduces a novel training strategy based on curriculum learning to improve the robustness of deep learning models for extreme image deblurring.
- Score: 2.348041867134616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Restoring severely blurred images remains a significant challenge in computer vision, impacting applications in autonomous driving, medical imaging, and photography. This paper introduces a novel training strategy based on curriculum learning to improve the robustness of deep learning models for extreme image deblurring. Unlike conventional approaches that train on only low to moderate blur levels, our method progressively increases the difficulty by introducing images with higher blur severity over time, allowing the model to adapt incrementally. Additionally, we integrate perceptual and hinge loss during training to enhance fine detail restoration and improve training stability. We experimented with various curriculum learning strategies and explored the impact of the train-test domain gap on the deblurring performance. Experimental results on the Extreme-GoPro dataset showed that our method outperforms the next best method by 14% in SSIM, whereas experiments on the Extreme-KITTI dataset showed that our method outperforms the next best by 18% in SSIM. Ablation studies showed that a linear curriculum progression outperforms step-wise, sigmoid, and exponential progressions, while hyperparameter settings such as the training blur percentage and loss function formulation all play important roles in addressing extreme blur artifacts. Datasets and code are available at https://github.com/RAPTOR-MSSTATE/XDECODE
Related papers
- DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration [2.7523980737007414]
Astrophotography presents unique challenges for deep learning due to limited training data.<n>This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting.<n>We propose enhancements to the DIP model's baseline performance through several advanced techniques.
arXiv Detail & Related papers (2025-03-20T09:33:16Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
Existing methods suffer from a generalization bottleneck in real-world scenarios.<n>We contribute a million-scale dataset with two notable advantages over existing training data.<n>We propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios.
arXiv Detail & Related papers (2024-12-02T12:08:40Z) - X-Transfer: A Transfer Learning-Based Framework for GAN-Generated Fake
Image Detection [33.31312811230408]
misuse of GANs for generating deceptive images, such as face replacement, raises significant security concerns.
This paper introduces a novel GAN-generated image detection algorithm called X-Transfer.
It enhances transfer learning by utilizing two neural networks that employ interleaved parallel gradient transmission.
arXiv Detail & Related papers (2023-10-07T01:23:49Z) - Accelerating Multiframe Blind Deconvolution via Deep Learning [0.0]
Ground-based solar image restoration is a computationally expensive procedure.
We propose a new method to accelerate the restoration based on algorithm unrolling.
We show that both methods significantly reduce the restoration time compared to the standard optimization procedure.
arXiv Detail & Related papers (2023-06-21T07:53:00Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Train smarter, not harder: learning deep abdominal CT registration on
scarce data [0.8179387741893692]
We explore training strategies to improve convolutional neural network-based image-to-image registration for abdominal imaging.
Guiding registration using segmentations in the training step proved beneficial for deep-learning-based image registration.
Finetuning the pretrained model from the brain MRI dataset to the abdominal CT dataset further improved performance.
arXiv Detail & Related papers (2022-11-28T19:03:01Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - On Efficient Transformer and Image Pre-training for Low-level Vision [74.22436001426517]
Pre-training has marked numerous state of the arts in high-level computer vision.
We present an in-depth study of image pre-training.
We find pre-training plays strikingly different roles in low-level tasks.
arXiv Detail & Related papers (2021-12-19T15:50:48Z) - A Loss Curvature Perspective on Training Instability in Deep Learning [28.70491071044542]
We study the evolution of the loss Hessian across many classification tasks in order to understand the effect curvature of the loss has on the training dynamics.
Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization.
arXiv Detail & Related papers (2021-10-08T20:25:48Z) - Low-resolution Human Pose Estimation [49.531572116079026]
We propose a novel Confidence-Aware Learning (CAL) method for low-resolution pose estimation.
CAL addresses two fundamental limitations of existing offset learning methods: inconsistent training and testing, decoupled heatmap and offset learning.
Our method outperforms significantly the state-of-the-art methods for low-resolution human pose estimation.
arXiv Detail & Related papers (2021-09-19T09:13:57Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.