論文の概要: On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction
- arxiv url: http://arxiv.org/abs/2504.08169v1
- Date: Thu, 10 Apr 2025 23:41:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:20:34.032532
- Title: On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction
- Title(参考訳): 広告変換率予測のための階層型エンサンブルネットワークの実践について
- Authors: Jinfeng Zhuang, Yinrui Li, Runze Su, Ke Xu, Zhixuan Shao, Kungang Li, Ling Leng, Han Sun, Meng Qi, Yixiong Meng, Yang Tang, Zhifang Liu, Qifei Shen, Aayush Mudgal,
- Abstract要約: 本稿では,DHENを単一のバックボーンモデルアーキテクチャとして用いたマルチタスク学習フレームワークを提案する。
我々は,CVR予測のために,オンサイトリアルタイムユーザ行動シーケンスとオフサイト変換イベントシーケンスの両方を構築した。
本手法は,事前学習したユーザパーソナライズ機能付き単一機能横断モジュールと比較して,最先端性能を実現する。
- 参考スコア(独自算出の注目度): 12.043046910565215
- License:
- Abstract: The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
- Abstract(参考訳): クリックスルーレート(CTR)とコンバージョンレート(CVR)の予測は、アドレコメンデーションシステムの成功に重要な役割を果たす。
Deep Hierarchical Ensemble Network (DHEN) は複数の機能横断モジュールを統合するために提案されており、CTR予測において大きな成功を収めている。
しかし、そのCVR予測性能は変換広告設定において不明確であり、そこでは、購入、カートの追加、サインアップなどを含むサードパーティのウェブサイトやアプリ上で、ユーザのオフサイトアクションの確率を広告が入札する。
DHENのいくつかの課題:
1) DHENにはどの機能横断モジュール(MLP、DCN、Transformerなど)を含めるべきだろうか?
2DHENは、効率と有効性の間の最良のトレードオフを達成するために、どの程度の深さと幅を持つべきか。
3) 各機能横断モジュールで選択すべきハイパーパラメータは何か?
モデルアーキテクチャと直交する、入力パーソナライズ機能は、高い自由度でモデルパフォーマンスに大きな影響を与えます。
本稿では,DHEN を用いたマルチタスク学習フレームワークを提案する。まず,DHEN をすべての CVR タスクを効果的に動作させるための,単一のバックボーンモデルアーキテクチャとして,DHEN を用いたマルチタスク学習フレームワークを提案する。
本手法は,事前学習したユーザパーソナライズ機能付き単一機能横断モジュールと比較して,最先端性能を実現する。
関連論文リスト
- Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習,グローバルコンテキストと細部の詳細の収集,(2)レジスタベースのクエリと事前学習の強化,クラスタリングと抑圧の必要性の排除,(3)微調整中の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化といった,新たなトラジェクタ予測フレームワークであるPerceiverを提案する。
論文 参考訳(メタデータ) (2025-01-08T20:11:09Z) - Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
クリックスルーレート(CTR)の予測は、オンラインパーソナライズプラットフォームにとって不可欠である。
近年の進歩は、リッチなユーザの振る舞いをモデル化することで、CTR予測の性能を大幅に改善できることを示している。
マルチグラニュラリティ興味検索ネットワーク(MIRRN)を提案する。
論文 参考訳(メタデータ) (2024-11-22T15:29:05Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
本稿では,多分野分類データに特徴的破損と回復を適用したMAP(Model-Agnostic Pretraining)フレームワークを提案する。
マスク付き特徴予測(RFD)と代替特徴検出(RFD)の2つの実用的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-08-03T12:55:55Z) - Contrastive Learning for Conversion Rate Prediction [6.607531486024888]
本稿では,CL4CVR(Contrastive Learning for CVR Prediction)フレームワークを提案する。
教師付きCVR予測タスクと、より良いデータ表現を学ぶための対照的な学習タスクを関連付ける。
2つの実世界の変換データセットの実験結果は、CL4CVRの優れた性能を示している。
論文 参考訳(メタデータ) (2023-07-12T07:42:52Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
本稿では,近隣相互作用に基づくCTR予測を提案し,そのタスクを異種情報ネットワーク(HIN)設定に組み込む。
周辺地域の表現を高めるために,ノード間のトポロジカルな相互作用を4種類検討する。
本研究では,2つの実世界のデータセットに関する総合的な実験を行い,提案手法が最先端のCTRモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-01-25T12:44:23Z) - Dynamic Parameterized Network for CTR Prediction [6.749659219776502]
我々は、明示的かつ暗黙的な相互作用をインスタンスワイズで学習するために、新しいプラグイン操作であるDynamic ized Operation (DPO)を提案した。
DNNモジュールとアテンションモジュールへのDPOの導入は,クリックスルー率(CTR)予測においてそれぞれ2つの主要なタスクに有効であることを示した。
我々のDynamic ized Networksは、パブリックデータセットと実世界のプロダクションデータセットのオフライン実験において、最先端の手法を著しく上回る。
論文 参考訳(メタデータ) (2021-11-09T08:15:03Z) - An Analysis Of Entire Space Multi-Task Models For Post-Click Conversion
Prediction [3.2979460528864926]
大規模広告プラットフォーム上でのモバイルアプリ広告におけるポストクリック変換イベント(インストール)の確率を近似することを検討する。
CTRタスクからCVRタスクへ、いくつかの異なるアプローチが、同様のポジティブなレベルの移行をもたらすことを示す。
我々の発見は、マルチタスク学習が現実世界の大規模アプリケーションで関連するイベントをモデル化する上で、合理的なアプローチであることを示す証拠が増えていることを示唆している。
論文 参考訳(メタデータ) (2021-08-18T13:39:50Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - AutoDis: Automatic Discretization for Embedding Numerical Features in
CTR Prediction [45.69943728028556]
高度な機能相互作用の学習は、レコメンデータシステムにおけるClick-Through Rate(CTR)予測に不可欠である。
様々な深いCTRモデルは、埋め込みとフィーチャーインタラクションのパラダイムに従います。
数値フィールドの特徴を自動的に識別し、エンドツーエンドでCTRモデルに最適化するフレームワークであるAutoDisを提案します。
論文 参考訳(メタデータ) (2020-12-16T14:31:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。