論文の概要: A Vulnerability Code Intent Summary Dataset
- arxiv url: http://arxiv.org/abs/2504.08180v1
- Date: Fri, 11 Apr 2025 00:39:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:46.071910
- Title: A Vulnerability Code Intent Summary Dataset
- Title(参考訳): 脆弱性コードインテント概要データセット
- Authors: Yifan Huang, Weisong Sun, Yubin Qu,
- Abstract要約: 本稿では,BADS と呼ばれる大規模多視点コードインテント・サマリ・データセットを提案する。
与えられたコードスニペットの理解を高め、コード開発プロセスのリスクを低減することを目的としている。
データセットと関連ツールがGitHubで公開されている。
- 参考スコア(独自算出の注目度): 3.609135490386991
- License:
- Abstract: In the era of Large Language Models (LLMs), the code summarization technique boosts a lot, along with the emergence of many new significant works. However, the potential of code summarization in the Computer Security Area still remains explored. Can we generate a code summary of a code snippet for its security intention? Thus, this work proposes an innovative large-scale multi-perspective Code Intent Summary Dataset named BADS , aiming to increase the understanding of a given code snippet and reduce the risk in the code developing process. The procedure of establishing a dataset can be divided into four steps: First, we collect samples of codes with known vulnerabilities as well as code generated by AI from multiple sources. Second, we do the data clean and format unification, then do the data combination. Third, we utilize the LLM to automatically Annotate the code snippet. Last, We do the human evaluation to double-check. The dataset contains X code examples which cover Y categories of vulnerability. Our data are from Z open-source projects and CVE entries, and compared to existing work, our dataset not only contains original code but also code function summary and security intent summary, providing context information for research in code security analysis. All information is in CSV format. The contributions of this paper are four-fold: the establishment of a high-quality, multi-perspective Code Intent Summary Dataset; an innovative method in data collection and processing; A new multi-perspective code analysis framework that promotes cross-disciplinary research in the fields of software engineering and cybersecurity; improving the practicality and scalability of the research outcomes by considering the code length limitations in real-world applications. Our dataset and related tools have been publicly released on GitHub.
- Abstract(参考訳): LLM(Large Language Models)の時代において、コード要約技術は、多くの新しい重要な作品の出現とともに、大いに加速します。
しかし、コンピュータセキュリティ領域におけるコード要約の可能性はまだ検討されている。
セキュリティ上の意図のために、コードスニペットのコード要約を生成することはできますか?
そこで本研究では,与えられたコードスニペットの理解を深め,コード開発プロセスのリスクを低減することを目的として,BADS という名前の大規模マルチパースペクティブコードインテント概要データセットを提案する。
まず、既知の脆弱性を持つコードのサンプルと、複数のソースからAIによって生成されたコードを集めます。
次に、データのクリーン化とフォーマットの統一を行い、次にデータの組み合わせを行います。
第3に、LLMを使用してコードスニペットを自動的にアノテーションします。
最後に、人間の評価をダブルチェックします。
データセットには、脆弱性のYカテゴリをカバーするXコードの例が含まれている。
我々のデータセットには、オリジナルのコードだけでなく、コード機能の要約とセキュリティ意図の要約が含まれており、コードセキュリティ分析の研究のためのコンテキスト情報を提供しています。
情報はすべてCSV形式である。
本論文のコントリビューションは,高品質で多視点のコードインテント概要データセットの構築,データ収集と処理の革新的手法,ソフトウェア工学とサイバーセキュリティの分野における学際的な研究を促進する多視点コード解析フレームワーク,実世界のアプリケーションにおけるコード長制限を考慮した研究成果の実用性とスケーラビリティの向上,の4つである。
データセットと関連ツールがGitHubで公開されている。
関連論文リスト
- SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
言語モデル(LLM)は、コードリポジトリを含む広範なデータセットに基づいてトレーニングされる。
それらの有効性を評価することは、トレーニングに使用されるデータセットと評価に使用されるデータセットとが重複する可能性があるため、大きな課題となる。
SnipGenは、コード生成のために、様々な下流タスクをまたいだ迅速なエンジニアリングを活用するように設計された包括的なリポジトリマイニングフレームワークである。
論文 参考訳(メタデータ) (2025-02-10T21:28:15Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Contextualized Data-Wrangling Code Generation in Computational Notebooks [131.26365849822932]
我々は、マルチモーダルなコンテキスト依存を明確にしたデータラングリングコード生成例をマイニングするために、CoCoMineという自動アプローチを提案する。
コンテクスト化されたデータラングリングコード生成のための58,221のサンプルを含むデータセットであるCoCoNoteをNotebooksで構築する。
実験結果は、データラングリングコード生成にデータコンテキストを組み込むことの重要性を示す。
論文 参考訳(メタデータ) (2024-09-20T14:49:51Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - CodeLL: A Lifelong Learning Dataset to Support the Co-Evolution of Data
and Language Models of Code [6.491009626125319]
コード変更に焦点を当てた生涯学習データセットであるCodeLLを紹介します。
私たちのデータセットは、オープンソースソフトウェアリポジトリのリリース履歴全体にわたるコード変更を包括的にキャプチャすることを目的としています。
CodeLLは、コード変更を学ぶための生涯にわたる微調整設定において、LMの振る舞いを研究することができる。
論文 参考訳(メタデータ) (2023-12-20T01:20:24Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - CoDesc: A Large Code-Description Parallel Dataset [4.828053113572208]
CoDescは420万のJavaメソッドと自然言語記述からなる大規模な並列データセットです。
広範囲な分析により、データセットから一般的なノイズパターンを特定し、削除する。
このデータセットは、コード検索を最大22%改善し、コード要約における新しい最先端を実現するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-29T05:40:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。