論文の概要: Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation
- arxiv url: http://arxiv.org/abs/2504.08195v1
- Date: Fri, 11 Apr 2025 01:46:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:10.934406
- Title: Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation
- Title(参考訳): マルチエージェント協調のための変圧器を用いたグラフベース深層強化学習
- Authors: Michael Elrod, Niloufar Mehrabi, Rahul Amin, Manveen Kaur, Long Cheng, Jim Martin, Abolfazl Razi,
- Abstract要約: 本稿では、グラフニューラルネットワーク(GNN)、深層強化学習(DRL)、マルチエージェント協調と集合タスク実行の強化のためのトランスフォーマーベースのメカニズムを統合する新しいフレームワークを提案する。
提案手法はGNNを用いて,適応グラフ構築によるエージェントエージェントとエージェントゴールの相互作用をモデル化し,制約付き通信下での効率的な情報集約と意思決定を可能にする。
- 参考スコア(独自算出の注目度): 2.8169258551959544
- License:
- Abstract: Mission planning for a fleet of cooperative autonomous drones in applications that involve serving distributed target points, such as disaster response, environmental monitoring, and surveillance, is challenging, especially under partial observability, limited communication range, and uncertain environments. Traditional path-planning algorithms struggle in these scenarios, particularly when prior information is not available. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution. Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication. A transformer-based message-passing mechanism, augmented with edge-feature-enhanced attention, captures complex interaction patterns, while a Double Deep Q-Network (Double DQN) with prioritized experience replay optimizes agent policies in partially observable environments. This integration is carefully designed to address specific requirements of multi-agent navigation, such as scalability, adaptability, and efficient task execution. Experimental results demonstrate superior performance, with 90% service provisioning and 100% grid coverage (node discovery), while reducing the average steps per episode to 200, compared to 600 for benchmark methods such as particle swarm optimization (PSO), greedy algorithms and DQN.
- Abstract(参考訳): 災害対応、環境監視、監視などの分散目標地点を提供するアプリケーションにおける協調型自律ドローン群のミッションプランニングは、特に部分観測可能性、限られた通信範囲、不確実な環境下では困難である。
従来のパス計画アルゴリズムは、特に事前情報が入手できない場合、これらのシナリオで苦労する。
これらの課題に対処するために、グラフニューラルネットワーク(GNN)、深層強化学習(DRL)、マルチエージェント協調と集合タスク実行の強化のためのトランスフォーマーベースのメカニズムを統合する新しいフレームワークを提案する。
提案手法は,GNNを用いてエージェントエージェントとエージェントゴールの相互作用を適応グラフ構築によりモデル化し,制約付き通信下での効率的な情報集約と意思決定を可能にする。
エッジ機能によって強化されたトランスフォーマーベースのメッセージパッシング機構は、複雑なインタラクションパターンをキャプチャする一方、Double Deep Q-Network(DQN)は、優先されたエクスペリエンスの再生によって、部分的に観測可能な環境でエージェントポリシーを最適化する。
この統合は、スケーラビリティ、適応性、効率的なタスク実行など、マルチエージェントナビゲーションの特定の要件に対処するように慎重に設計されている。
実験の結果、90%のサービスプロビジョニングと100%グリッドカバレッジ(ノードディスカバリ)で優れた性能を示し、一方、粒子群最適化(PSO)やグリーディアルゴリズム、DQNといったベンチマーク手法では、エピソード毎の平均ステップを200に削減した。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
本稿では,グラフニューラルネットワーク(GNN)を一元的トレーニングと分散実行(CTDE)パラダイムに統合する新しいフレームワークを提案する。
本手法により,無人航空機 (UAV) と無人地上車両 (UGV) は, 中央調整を必要とせず, 効率よくタスクを割り当てることができる。
論文 参考訳(メタデータ) (2025-02-04T13:29:56Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
本稿では,マルチエージェント強化学習(MARL)と生成拡散モデル(GDM)を組み合わせた共同手法を提案する。
第2段階では,GDMのリバース・デノナイズ・プロセスを利用して,マルチエージェント・ディープ・Deep Deterministic Policy gradient(MADDPG)におけるアクタネットワークを置き換える新しいDNNタスク割当アルゴリズム(GDM-MADDPG)を導入する。
シミュレーションの結果,提案アルゴリズムは,経路計画,情報化時代(AoI),エネルギー消費,タスク負荷分散の観点から,ベンチマークに比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-11-13T02:41:02Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
本稿では、AlterNAting Coordination and Network-Design Algorithm(Anaconda)を紹介する。
Anacondaはスケーラブルなアルゴリズムで、ほぼ最適性を保証する。
地域モニタリングのシミュレーションシナリオを実演し,それを最先端のアルゴリズムと比較する。
論文 参考訳(メタデータ) (2024-09-02T18:11:33Z) - MASP: Scalable GNN-based Planning for Multi-Agent Navigation [18.70078556851899]
Multi-Agent Scalable Graph-based Planner (MASP)は、ナビゲーションタスクのためのゴール条件付き階層型プランナーである。
MASPは、大規模な探索空間を複数の目標条件付き部分空間に分解することで、空間の複雑さを低減するために階層的なフレームワークを採用している。
エージェントの協力とさまざまなチームサイズへの適応のために、エージェントと目標をグラフとしてモデル化し、それらの関係をよりよく捉えます。
論文 参考訳(メタデータ) (2023-12-05T06:05:04Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
本稿では,階層型グラフ再帰ネットワーク(HGRN)と呼ばれる新しいネットワーク構造を提案する。
以上の技術に基づいて,Soft-HGRNと呼ばれる値に基づくMADRLアルゴリズムと,SAC-HRGNというアクタクリティカルな変種を提案する。
論文 参考訳(メタデータ) (2021-09-05T09:51:25Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
グラフニューラルネットワーク(GNN)を用いたアドホックネットワークにおけるデータ分散のためのタスク非依存,分散化,低レイテンシ手法を提案する。
当社のアプローチは、グローバル状態情報に基づいたマルチエージェントアルゴリズムを各ロボットで利用可能にすることで機能させます。
我々は,情報の平均年齢を報酬関数として強化学習を通じて分散gnn通信政策を訓練し,タスク固有の報酬関数と比較してトレーニング安定性が向上することを示す。
論文 参考訳(メタデータ) (2021-03-08T21:48:55Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。