論文の概要: Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks
- arxiv url: http://arxiv.org/abs/2012.03158v1
- Date: Sun, 6 Dec 2020 01:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 13:51:07.619204
- Title: Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks
- Title(参考訳): 無線ドローンネットワークにおける軌道設計のための分散マルチエージェントメタ学習
- Authors: Ye Hu, Mingzhe Chen, Walid Saad, H. Vincent Poor, and Shuguang Cui
- Abstract要約: 本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
- 参考スコア(独自算出の注目度): 151.27147513363502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the problem of the trajectory design for a group of
energy-constrained drones operating in dynamic wireless network environments is
studied. In the considered model, a team of drone base stations (DBSs) is
dispatched to cooperatively serve clusters of ground users that have dynamic
and unpredictable uplink access demands. In this scenario, the DBSs must
cooperatively navigate in the considered area to maximize coverage of the
dynamic requests of the ground users. This trajectory design problem is posed
as an optimization framework whose goal is to find optimal trajectories that
maximize the fraction of users served by all DBSs. To find an optimal solution
for this non-convex optimization problem under unpredictable environments, a
value decomposition based reinforcement learning (VDRL) solution coupled with a
meta-training mechanism is proposed. This algorithm allows the DBSs to
dynamically learn their trajectories while generalizing their learning to
unseen environments. Analytical results show that, the proposed VD-RL algorithm
is guaranteed to converge to a local optimal solution of the non-convex
optimization problem. Simulation results show that, even without meta-training,
the proposed VD-RL algorithm can achieve a 53.2% improvement of the service
coverage and a 30.6% improvement in terms of the convergence speed, compared to
baseline multi-agent algorithms. Meanwhile, the use of meta-learning improves
the convergence speed of the VD-RL algorithm by up to 53.8% when the DBSs must
deal with a previously unseen task.
- Abstract(参考訳): 本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について考察する。
検討されたモデルでは、ドローン基地局(DBS)のチームが派遣され、動的で予測不可能なアップリンクアクセス要求を持つ地上ユーザのクラスタを協調的に提供する。
このシナリオでは、DBSは、地上ユーザの動的要求のカバレッジを最大化するために、考慮された領域を協調的にナビゲートする必要がある。
この軌道設計問題は、すべてのdbsによって提供されるユーザの比率を最大化する最適な軌道を求めることを目標とする最適化フレームワークとして提案されている。
予測不可能な環境下でのこの非凸最適化問題の最適解を求めるため,メタ学習機構と結合した値分解型強化学習(VDRL)ソリューションを提案する。
このアルゴリズムにより、DBSは動的に軌跡を学習し、学習を目に見えない環境に一般化することができる。
解析の結果,提案するvd-rlアルゴリズムは非凸最適化問題の局所最適解に収束することが保証された。
シミュレーションの結果、メタトレーニングがなくても、提案するvd-rlアルゴリズムは、ベースラインマルチエージェントアルゴリズムと比較して、サービスカバレッジが53.2%向上し、収束速度が30.6%向上した。
一方、メタラーニングを使用することで、VD-RLアルゴリズムの収束速度は最大53.8%向上する。
関連論文リスト
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing [22.09756306579992]
UAVはエッジコンピューティング環境でインテリジェントなサーバとして機能し、通信システムのスループットを最大化するために飛行軌道を最適化する。
深部強化学習(DRL)に基づく軌道最適化アルゴリズムは、複雑な地形特徴と不十分な訓練データにより、訓練性能が低下する可能性がある。
本研究は,マルチUAV軌道最適化のための新しい手法,すなわちパーソナライズされた深部強化学習(PF-DRL)を提案する。
論文 参考訳(メタデータ) (2023-09-05T12:54:40Z) - A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection [16.731929552692524]
本稿では,UAVが基地局(BS)のカバー範囲を広げて道路側ユニット(RSU)で生成したメタバースデータを収集する,UAV支援型メタバースネットワークについて考察する。
データ収集効率を改善するため、リソース割り当てとトラジェクトリ制御をシステムモデルに統合する。
提案するUAV支援Metaverseネットワークシステムモデルに基づいて,時間系列最適化問題を協調的に解くために,強化学習と凸最適化を備えたハイブリッドフレームワークを設計する。
論文 参考訳(メタデータ) (2023-05-29T11:49:20Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
移動ネットワークにおける動的な交通需要の課題は、無人航空機をベースとした移動セルに対処されている。
将来,無人航空機の膨大な可能性を考えると,カバー範囲最適化のための新しいアルゴリズムを提案する。
提案アルゴリズムは,一意の多層和プーリング損失関数を持つ条件付き生成逆ニューラルネットワークに基づいて実装された。
論文 参考訳(メタデータ) (2022-03-25T12:13:21Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。