論文の概要: Deep Distributional Learning with Non-crossing Quantile Network
- arxiv url: http://arxiv.org/abs/2504.08215v1
- Date: Fri, 11 Apr 2025 02:46:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:41.177355
- Title: Deep Distributional Learning with Non-crossing Quantile Network
- Title(参考訳): 非交差量子ネットワークを用いた深部分布学習
- Authors: Guohao Shen, Runpeng Dai, Guojun Wu, Shikai Luo, Chengchun Shi, Hongtu Zhu,
- Abstract要約: 条件分布学習のためのNQ(Non-crossing Quantile)ネットワークを導入する。
非負の活性化関数を利用することで、NQネットワークは学習された分布が単調であることを保証する。
NQネットワークに基づく深層分布学習フレームワークは、高度に適応可能である。
- 参考スコア(独自算出の注目度): 17.3807089737521
- License:
- Abstract: In this paper, we introduce a non-crossing quantile (NQ) network for conditional distribution learning. By leveraging non-negative activation functions, the NQ network ensures that the learned distributions remain monotonic, effectively addressing the issue of quantile crossing. Furthermore, the NQ network-based deep distributional learning framework is highly adaptable, applicable to a wide range of applications, from classical non-parametric quantile regression to more advanced tasks such as causal effect estimation and distributional reinforcement learning (RL). We also develop a comprehensive theoretical foundation for the deep NQ estimator and its application to distributional RL, providing an in-depth analysis that demonstrates its effectiveness across these domains. Our experimental results further highlight the robustness and versatility of the NQ network.
- Abstract(参考訳): 本稿では,条件分布学習のためのNQ(Non-crossing Quantile)ネットワークを提案する。
非負の活性化関数を利用することで、NQネットワークは学習された分布が単調であることを保証する。
さらに、NQネットワークに基づく深部分布学習フレームワークは、古典的非パラメトリック量子化回帰から因果効果推定や分布強化学習(RL)といったより高度なタスクまで、幅広い応用に適用可能である。
また、深部NQ推定器とその分布RLへの応用に関する総合的な理論基盤を構築し、これらの領域におけるその有効性を示す詳細な分析を提供する。
実験結果はNQネットワークの堅牢性と汎用性をさらに強調した。
関連論文リスト
- Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
低精度の重みとアクティベーションを備えたディープラーニングモデルのトレーニングには、必要な最適化タスクが伴う。
ネットワーク量子化の性質を克服する方法を紹介します。
また,訓練用量子化深層ネットワークにおける重み進化の繰り返し現象の数値的証拠を示す。
論文 参考訳(メタデータ) (2020-12-10T09:14:43Z) - Statistical Mechanics of Deep Linear Neural Networks: The
Back-Propagating Renormalization Group [4.56877715768796]
個々の単位の入力出力関数が線形である深線型ニューラルネットワーク(DLNN)における学習の統計力学について検討する。
重み空間における平衡ギブス分布を用いて教師あり学習後のネットワーク特性を正確に解く。
数値シミュレーションにより, 非線形性にもかかわらず, 理論の予測は大部分, 深さの小さいreluネットワークによって共有されていることが明らかとなった。
論文 参考訳(メタデータ) (2020-12-07T20:08:31Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
スパースディープラーニングは、ディープニューラルネットワークによる巨大なストレージ消費の課題に対処することを目的としている。
本稿では,スパイク・アンド・スラブ前処理による完全ベイズ処理により,疎いディープニューラルネットワークを訓練する。
我々はベルヌーイ分布の連続緩和による計算効率の良い変分推論のセットを開発する。
論文 参考訳(メタデータ) (2020-11-15T03:27:54Z) - Analytical aspects of non-differentiable neural networks [0.0]
本稿では、量子化されたニューラルネットワークの表現性と、微分不可能なネットワークに対する近似手法について論じる。
ここでは,QNN が DNN と同じ表現性を持つことを示す。
また,Heaviside型アクティベーション関数を用いて定義されたネットワークについても検討し,スムーズなネットワークによるポイントワイズ近似の結果を証明した。
論文 参考訳(メタデータ) (2020-11-03T17:20:43Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
フル量子化トレーニング(FQT)は、ニューラルネットワークモデルのアクティベーション、重み、勾配を定量化することで、低ビット幅のハードウェアを使用する。
FQTの最大の課題は、特に勾配量子化が収束特性にどのように影響するかという理論的な理解の欠如である。
論文 参考訳(メタデータ) (2020-10-27T13:57:33Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
本稿では、値に基づく強化学習手法において、よく知られた過大評価問題を緩和することを目的とした、新しいクロスQ-ラーニングアルゴリズムを提案する。
本アルゴリズムは,並列モデルの集合を維持し,ランダムに選択されたネットワークに基づいてQ値を算出することによって,二重Q-ラーニングに基づいて構築する。
論文 参考訳(メタデータ) (2020-09-29T04:58:17Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。