Local Distance-Preserving Node Embeddings and Their Performance on Random Graphs
- URL: http://arxiv.org/abs/2504.08216v1
- Date: Fri, 11 Apr 2025 02:47:46 GMT
- Title: Local Distance-Preserving Node Embeddings and Their Performance on Random Graphs
- Authors: My Le, Luana Ruiz, Souvik Dhara,
- Abstract summary: We study the performance of local distance-preserving node embeddings.<n>Known as landmark-based algorithms, these embeddings approximate pairwise distances by computing shortest paths from a small subset of reference nodes (i.e., landmarks)<n>Our main theoretical contribution shows that random graphs, such as ErdHos-R'enyi random graphs, require lower dimensions in landmark-based embeddings compared to worst-case graphs.<n> Empirically, we demonstrate that the GNN-based approximations for the distances to landmarks generalize well to larger networks, offering a scalable alternative for graph representation learning.
- Score: 6.107812768939554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning node representations is a fundamental problem in graph machine learning. While existing embedding methods effectively preserve local similarity measures, they often fail to capture global functions like graph distances. Inspired by Bourgain's seminal work on Hilbert space embeddings of metric spaces (1985), we study the performance of local distance-preserving node embeddings. Known as landmark-based algorithms, these embeddings approximate pairwise distances by computing shortest paths from a small subset of reference nodes (i.e., landmarks). Our main theoretical contribution shows that random graphs, such as Erd\H{o}s-R\'enyi random graphs, require lower dimensions in landmark-based embeddings compared to worst-case graphs. Empirically, we demonstrate that the GNN-based approximations for the distances to landmarks generalize well to larger networks, offering a scalable alternative for graph representation learning.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein
Distance [18.522233517515975]
We introduce an extension of Gromov-Wasserstein distance for comparing graphs whose both nodes and edges have features.
We empirically show the effectiveness of the novel distance in learning tasks where graphs occur in either input space or output space.
arXiv Detail & Related papers (2023-09-28T17:05:03Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
We show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
Our new upper bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(frac1S)$ at the fastest.
arXiv Detail & Related papers (2023-05-13T17:29:18Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale (GAS) is a framework for scaling arbitrary message-passing GNNs to large graphs.
Gas prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations.
Gas reaches state-of-the-art performance on large-scale graphs.
arXiv Detail & Related papers (2021-06-10T09:26:56Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
replacing discrete unordered objects such as graph nodes by real-valued vectors is at the heart of many approaches to learning from graph data.
We address the problem of learning discrete node embeddings such that the coordinates of the node vector representations are graph nodes.
This opens the door to designing interpretable machine learning algorithms for graphs as all attributes originally present in the nodes are preserved.
arXiv Detail & Related papers (2021-02-09T11:39:06Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Isometric Graph Neural Networks [5.306334746787569]
We propose a technique to learn Isometric Graph Neural Networks (IGNN)
IGNN requires changing the input representation space and loss function to enable any GNN algorithm to generate representations that reflect distances between nodes.
We observe a consistent and substantial improvement as high as 400% in Kendall's Tau (KT)
arXiv Detail & Related papers (2020-06-16T22:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.