Academic Network Representation via Prediction-Sampling Incorporated Tensor Factorization
- URL: http://arxiv.org/abs/2504.08323v1
- Date: Fri, 11 Apr 2025 07:47:39 GMT
- Title: Academic Network Representation via Prediction-Sampling Incorporated Tensor Factorization
- Authors: Chunyang Zhang, Xin Liao, Hao Wu,
- Abstract summary: This paper proposes a Prediction-based Latent Factorization ofs (PLFT) model to learn accurate representation of an academic network.<n> Experimental results from the three real-world academic network datasets show that the PLFT model outperforms existing models when predicting the unexplored relationships among network entities.
- Score: 13.738656799296258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate representation to an academic network is of great significance to academic relationship mining like predicting scientific impact. A Latent Factorization of Tensors (LFT) model is one of the most effective models for learning the representation of a target network. However, an academic network is often High-Dimensional and Incomplete (HDI) because the relationships among numerous network entities are impossible to be fully explored, making it difficult for an LFT model to learn accurate representation of the academic network. To address this issue, this paper proposes a Prediction-sampling-based Latent Factorization of Tensors (PLFT) model with two ideas: 1) constructing a cascade LFT architecture to enhance model representation learning ability via learning academic network hierarchical features, and 2) introducing a nonlinear activation-incorporated predicting-sampling strategy to more accurately learn the network representation via generating new academic network data layer by layer. Experimental results from the three real-world academic network datasets show that the PLFT model outperforms existing models when predicting the unexplored relationships among network entities.
Related papers
- Ordered Topological Deep Learning: a Network Modeling Case Study [7.358417570496687]
We revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL)
This paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces.
To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles.
arXiv Detail & Related papers (2025-03-20T23:15:12Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - On Learnable Parameters of Optimal and Suboptimal Deep Learning Models [2.889799048595314]
We study the structural and operational aspects of deep learning models.
Our research focuses on the nuances of learnable parameters (weight) statistics, distribution, node interaction, and visualization.
arXiv Detail & Related papers (2024-08-21T15:50:37Z) - Leveraging advances in machine learning for the robust classification and interpretation of networks [0.0]
Simulation approaches involve selecting a suitable network generative model such as Erd"os-R'enyi or small-world.
We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes.
arXiv Detail & Related papers (2024-03-20T00:24:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks [44.31729147722701]
We show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks.<n>This work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
arXiv Detail & Related papers (2023-05-11T17:19:30Z) - Large-scale Dynamic Network Representation via Tensor Ring Decomposition [0.0]
Large-scale Dynamic Networks (LDNs) are becoming increasingly important in the Internet age.
This work proposes a model based on the Ring (TR) decomposition for efficient representation learning for a LDN.
Experimental studies on two real LDNs demonstrate that the propose method achieves higher accuracy than existing models.
arXiv Detail & Related papers (2023-04-18T08:02:48Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - The Self-Simplifying Machine: Exploiting the Structure of Piecewise
Linear Neural Networks to Create Interpretable Models [0.0]
We introduce novel methodology toward simplification and increased interpretability of Piecewise Linear Neural Networks for classification tasks.
Our methods include the use of a trained, deep network to produce a well-performing, single-hidden-layer network without further training.
On these methods, we conduct preliminary studies of model performance, as well as a case study on Wells Fargo's Home Lending dataset.
arXiv Detail & Related papers (2020-12-02T16:02:14Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.