Understanding Forgetting in Continual Learning with Linear Regression
- URL: http://arxiv.org/abs/2405.17583v1
- Date: Mon, 27 May 2024 18:33:37 GMT
- Title: Understanding Forgetting in Continual Learning with Linear Regression
- Authors: Meng Ding, Kaiyi Ji, Di Wang, Jinhui Xu,
- Abstract summary: Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently.
We provide a general theoretical analysis of forgetting in the linear regression model via Gradient Descent.
We demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting.
- Score: 21.8755265936716
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently. Despite the tremendous progress made in the past, the theoretical understanding, especially factors contributing to catastrophic forgetting, remains relatively unexplored. In this paper, we provide a general theoretical analysis of forgetting in the linear regression model via Stochastic Gradient Descent (SGD) applicable to both underparameterized and overparameterized regimes. Our theoretical framework reveals some interesting insights into the intricate relationship between task sequence and algorithmic parameters, an aspect not fully captured in previous studies due to their restrictive assumptions. Specifically, we demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting. Additionally, our findings highlight that an appropriate choice of step size will help mitigate forgetting in both underparameterized and overparameterized settings. To validate our theoretical analysis, we conducted simulation experiments on both linear regression models and Deep Neural Networks (DNNs). Results from these simulations substantiate our theoretical findings.
Related papers
- On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Understanding Incremental Learning of Gradient Descent: A Fine-grained
Analysis of Matrix Sensing [74.2952487120137]
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in machine learning models.
This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem.
arXiv Detail & Related papers (2023-01-27T02:30:51Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Analysis of Catastrophic Forgetting for Random Orthogonal Transformation
Tasks in the Overparameterized Regime [9.184987303791292]
We show that in permuted MNIST image classification tasks, the performance of multilayer perceptrons trained by vanilla gradient descent can be improved.
We provide a theoretical explanation of this effect by studying a qualitatively similar two-task linear regression problem.
We show that when a model is trained on the two tasks in sequence without any additional regularization, the risk gain on the first task is small.
arXiv Detail & Related papers (2022-06-01T18:04:33Z) - A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
Overparameterized Machine Learning [37.01683478234978]
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field.
One of the most important riddles is the good empirical generalization of over parameterized models.
arXiv Detail & Related papers (2021-09-06T10:48:40Z) - A Theoretical Analysis of Fine-tuning with Linear Teachers [31.849269592822296]
Fine-tuning is a common practice in deep learning, achieving excellent results on downstream tasks using relatively little training data.
We show that the success of fine-tuning depends on the similarity between the source tasks and the target task, however measuring it is non trivial.
arXiv Detail & Related papers (2021-07-04T14:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.