論文の概要: Integrated ensemble of BERT- and features-based models for authorship attribution in Japanese literary works
- arxiv url: http://arxiv.org/abs/2504.08527v1
- Date: Fri, 11 Apr 2025 13:40:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:16.460244
- Title: Integrated ensemble of BERT- and features-based models for authorship attribution in Japanese literary works
- Title(参考訳): 文学作品における著作帰属のためのBERTと特徴に基づく統合的アンサンブル
- Authors: Taisei Kanda, Mingzhe Jin, Wataru Zaitsu,
- Abstract要約: オーサシップ属性(AA)タスクは、テキストから抽出されたスタイリスティックな特徴に基づいた統計データ分析と分類に依存している。
本研究では,AAタスクにおける従来の特徴ベース手法と近代的PLM法を組み合わせた統合的アンサンブルを用いて,小さなサンプルにおいて性能を著しく向上することを目的とした。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License:
- Abstract: Traditionally, authorship attribution (AA) tasks relied on statistical data analysis and classification based on stylistic features extracted from texts. In recent years, pre-trained language models (PLMs) have attracted significant attention in text classification tasks. However, although they demonstrate excellent performance on large-scale short-text datasets, their effectiveness remains under-explored for small samples, particularly in AA tasks. Additionally, a key challenge is how to effectively leverage PLMs in conjunction with traditional feature-based methods to advance AA research. In this study, we aimed to significantly improve performance using an integrated integrative ensemble of traditional feature-based and modern PLM-based methods on an AA task in a small sample. For the experiment, we used two corpora of literary works to classify 10 authors each. The results indicate that BERT is effective, even for small-sample AA tasks. Both BERT-based and classifier ensembles outperformed their respective stand-alone models, and the integrated ensemble approach further improved the scores significantly. For the corpus that was not included in the pre-training data, the integrated ensemble improved the F1 score by approximately 14 points, compared to the best-performing single model. Our methodology provides a viable solution for the efficient use of the ever-expanding array of data processing tools in the foreseeable future.
- Abstract(参考訳): 伝統的に、著者属性(AA)タスクは、テキストから抽出されたスタイリスティックな特徴に基づいた統計データ分析と分類に依存していた。
近年,事前学習型言語モデル (PLM) がテキスト分類タスクにおいて注目されている。
しかし、大規模な短文データセットでは優れた性能を示すが、その効果は小さなサンプル、特にAAタスクでは未探索のままである。
さらに重要な課題は、従来の機能ベースの手法と組み合わせてPLMを効果的に活用してAA研究を進める方法である。
本研究では,AAタスクにおける従来の特徴ベース手法と近代的PLM法を組み合わせた統合的アンサンブルを用いて,小さなサンプルにおいて性能を著しく向上することを目的とした。
実験では,文学作品の2つのコーパスを用いて,それぞれ10人の著者を分類した。
その結果,小さめのAAタスクにおいてもBERTが有効であることが示唆された。
BERTベースのアンサンブルと分類器のアンサンブルはそれぞれのスタンドアローンモデルよりも優れており、統合アンサンブルアプローチによりスコアが大幅に向上した。
プレトレーニングデータに含まれていないコーパスでは、統合アンサンブルは最高性能のシングルモデルと比較してF1スコアを約14ポイント改善した。
我々の方法論は、近い将来に拡張されたデータ処理ツールの効率的な利用のために実行可能なソリューションを提供する。
関連論文リスト
- READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
BERTのような事前訓練されたトランスフォーマーモデルは、多くのテキスト分類タスクで大幅に向上している。
本稿では,強化学習に基づくテキスト生成と半教師付き対角学習アプローチをカプセル化する手法を提案する。
提案手法であるREADは、ラベルのないデータセットを用いて、強化学習を通じて多様な合成テキストを生成する。
論文 参考訳(メタデータ) (2025-01-14T11:39:55Z) - Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - RDBE: Reasoning Distillation-Based Evaluation Enhances Automatic Essay Scoring [0.0]
Reasoning Distillation-Based Evaluation (RDBE) は、解釈可能性を統合し、モデルスコアの背景にある理論的根拠を解明する。
実験により, データセットに考慮したすべてのスコアリングルーリックに対してRDBEの有効性が示された。
論文 参考訳(メタデータ) (2024-07-03T05:49:01Z) - Analysis of Multidomain Abstractive Summarization Using Salience
Allocation [2.6880540371111445]
季節は、塩分割り当て技術を活用して要約を強化するために設計されたモデルである。
本稿では、ROUGE、METEOR、BERTScore、MoverScoreなどの様々な評価指標を用いて、抽象的な要約を生成するために微調整されたモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-02-19T08:52:12Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggetsはワンショット学習を使用して、広範なデータセットから高品質な命令データを選択する。
我々は,textscNuggets がキュレートした例の上位1%による命令チューニングが,データセット全体を用いた従来の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:33:12Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - A Unified Neural Network Model for Readability Assessment with Feature
Projection and Length-Balanced Loss [17.213602354715956]
本稿では,可読性評価のための特徴投影と長さバランス損失を考慮したBERTモデルを提案する。
本モデルは,2つの英語ベンチマークデータセットと1つの中国語教科書データセットを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-19T05:33:27Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。