論文の概要: Shadow Erosion and Nighttime Adaptability for Camera-Based Automated Driving Applications
- arxiv url: http://arxiv.org/abs/2504.08551v1
- Date: Fri, 11 Apr 2025 14:02:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:43.818291
- Title: Shadow Erosion and Nighttime Adaptability for Camera-Based Automated Driving Applications
- Title(参考訳): カメラベース自動駆動アプリケーションにおけるシャドーエロージョンと夜間適応性
- Authors: Mohamed Sabry, Gregory Schroeder, Joshua Varughese, Cristina Olaverri-Monreal,
- Abstract要約: 自律走行では、難易度の高い照明条件下での画質向上に様々な技術が用いられている。
本稿では、自動走行用画像におけるシャドウエロージョンと夜間適応性のためのパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.2474908349649168
- License:
- Abstract: Enhancement of images from RGB cameras is of particular interest due to its wide range of ever-increasing applications such as medical imaging, satellite imaging, automated driving, etc. In autonomous driving, various techniques are used to enhance image quality under challenging lighting conditions. These include artificial augmentation to improve visibility in poor nighttime conditions, illumination-invariant imaging to reduce the impact of lighting variations, and shadow mitigation to ensure consistent image clarity in bright daylight. This paper proposes a pipeline for Shadow Erosion and Nighttime Adaptability in images for automated driving applications while preserving color and texture details. The Shadow Erosion and Nighttime Adaptability pipeline is compared to the widely used CLAHE technique and evaluated based on illumination uniformity and visual perception quality metrics. The results also demonstrate a significant improvement over CLAHE, enhancing a YOLO-based drivable area segmentation algorithm.
- Abstract(参考訳): RGBカメラからの画像の強調は、医療画像、衛星画像、自動運転など、広範囲にまたがる応用のために特に興味深い。
自律走行では、難易度の高い照明条件下での画質向上に様々な技術が用いられている。
これには、夜間条件の視認性を改善するための人工的な拡張、照明の変動の影響を低減するための照明不変画像、明るい日光における一貫した画像の明瞭性を確保するための影の緩和が含まれる。
本稿では、色やテクスチャの詳細を保存しつつ、自動運転用画像におけるシャドウエロージョンと夜間適応性のためのパイプラインを提案する。
The Shadow Erosion and Nighttime Adaptability Pipeline is compared to the wide used CLAHE technique and evaluation based on lightumination uniformity and visual perception quality metrics。
また,CLAHEよりも大幅に改善され,YOLOに基づくドライビング可能な領域分割アルゴリズムが向上した。
関連論文リスト
- Enhancing Nighttime Vehicle Detection with Day-to-Night Style Transfer and Labeling-Free Augmentation [0.6749750044497732]
本研究では、CARLA生成合成データを利用したラベリングフリーなデータ拡張のための新しいフレームワークを提案する。
特に、このフレームワークは、現実的な日々のスタイルの転送のために、効率的な注意生成広告ネットワークを組み込んでいる。
提案手法の有効性を評価するため,夜間の農村環境に特化して収集したデータセットを用いてYOLO11モデルを微調整した。
論文 参考訳(メタデータ) (2024-12-21T04:13:46Z) - Real-Time Multi-Scene Visibility Enhancement for Promoting Navigational Safety of Vessels Under Complex Weather Conditions [48.529493393948435]
この可視光カメラは、インテリジェントな水上輸送システムにおいて、海洋表面の容器に不可欠なイメージングセンサーとして登場した。
視覚画像の画質は、複雑な気象条件下での様々な劣化に必然的に悩まされる。
本研究では,異なる気象条件下で撮影された劣化画像を復元する汎用多場面可視性向上手法を開発した。
論文 参考訳(メタデータ) (2024-09-02T23:46:27Z) - Exploring Reliable Matching with Phase Enhancement for Night-time Semantic Segmentation [58.180226179087086]
夜間セマンティックセマンティックセグメンテーションに適した新しいエンドツーエンド最適化手法であるNightFormerを提案する。
具体的には,画素レベルのテクスチャ・エンハンスメント・モジュールを設計し,フェーズ・エンハンスメントとアンプリメント・アテンションとともに階層的にテクスチャ・アウェア機能を取得する。
提案手法は、最先端の夜間セマンティックセグメンテーション手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2024-08-25T13:59:31Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [10.957431540794836]
不適切な照明は、情報損失や画質の低下を招き、監視などの様々な応用に影響を及ぼす可能性がある。
現在のエンハンスメント技術は、しばしば特定のデータセットを使用して低照度画像を強化するが、様々な現実世界の条件に適応する際の課題は残る。
アダプティブ・ライト・エンハンスメント・ネットワーク (ALEN) を導入し、その主なアプローチは、ローカル照明とグローバル照明の強化が必要であるかどうかを決定するための分類機構を使用することである。
論文 参考訳(メタデータ) (2024-07-29T05:19:23Z) - Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving [45.97279394690308]
LightDiffは、自動運転アプリケーションの低照度画像品質を高めるために設計されたフレームワークである。
深度マップ、RGB画像、テキストキャプションなど、様々なモードから入力重みを適応的に制御する新しいマルチコンディションアダプタが組み込まれている。
夜間の条件下での最先端の3D検出器の性能を著しく向上し、高い視覚的品質のスコアを達成できる。
論文 参考訳(メタデータ) (2024-04-07T04:10:06Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
夜間の運転シーンでは、不十分で不均一な照明が暗闇の中でシーンを遮蔽し、画質と可視性が低下する。
雨天時の運転シーンに適した画像デライニング・フレームワークを開発した。
雨の人工物を取り除き、風景表現を豊かにし、有用な情報を復元することを目的としている。
論文 参考訳(メタデータ) (2024-02-28T09:02:33Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
自己校正イルミネーション(Self-Calibrated Illumination, SCI)は、当初RGB画像向けに開発された戦略である。
我々はSCI法を用いて、低照度条件下で通常失われる詳細を強調・明らかにする。
この選択的照明強調方法は、色情報をそのまま残し、画像の色整合性を保つ。
論文 参考訳(メタデータ) (2023-12-23T08:49:19Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Low-light Image and Video Enhancement via Selective Manipulation of
Chromaticity [1.4680035572775534]
低照度画像と映像強調のための簡易かつ効果的なアプローチを提案する。
上述の適応性により、低照度画像分解による照明と反射率へのコストのかかるステップを回避できる。
標準の低照度画像データセットでは,いくつかの最先端技術に対して,アルゴリズムの有効性と質的,定量的な優位性を示す。
論文 参考訳(メタデータ) (2022-03-09T17:01:28Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。