Efficient Mixture of Geographical Species for On Device Wildlife Monitoring
- URL: http://arxiv.org/abs/2504.08620v1
- Date: Fri, 11 Apr 2025 15:25:36 GMT
- Title: Efficient Mixture of Geographical Species for On Device Wildlife Monitoring
- Authors: Emmanuel Azuh Mensah, Joban Mand, Yueheng Ou, Min Jang, Kurtis Heimerl,
- Abstract summary: In this work, we explore the training of a single species detector which uses conditional to bias structured sub networks in a geographically-aware manner.<n>We propose a method for pruning the expert model per location and demonstrate conditional computation performance on two geographically distributed datasets: iNaturalist and iWildcam.
- Score: 2.8718221966298754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient on-device models have become attractive for near-sensor insight generation, of particular interest to the ecological conservation community. For this reason, deep learning researchers are proposing more approaches to develop lower compute models. However, since vision transformers are very new to the edge use case, there are still unexplored approaches, most notably conditional execution of subnetworks based on input data. In this work, we explore the training of a single species detector which uses conditional computation to bias structured sub networks in a geographically-aware manner. We propose a method for pruning the expert model per location and demonstrate conditional computation performance on two geographically distributed datasets: iNaturalist and iWildcam.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.<n>We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.<n>The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling [2.3776390335270694]
We introduce MiTREE, a multi-input Vision-Transformer-based model with an ecoregion encoder.<n>We evaluate our model on the SatBird Summer and Winter datasets, the goal of which is to predict bird species encounter rates.
arXiv Detail & Related papers (2024-12-25T22:20:47Z) - Generating Binary Species Range Maps [12.342459602972609]
Species distribution models (SDMs) and, more recently, deep learning-based variants offer a potential automated alternative.
Deep learning-based SDMs generate a continuous probability representing the predicted presence of a species at a given location.
We evaluate different approaches for automatically identifying the best thresholds for binarizing range maps using presence-only data.
arXiv Detail & Related papers (2024-08-28T17:17:20Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
We propose a new active learning approach for efficiently estimating the geographic range of a species from a limited number of on the ground observations.
We show that it is possible to generate this candidate set of ranges by using models that have been trained on large weakly supervised community collected observation data.
We conduct a detailed evaluation of our approach and compare it to existing active learning methods using an evaluation dataset containing expert-derived ranges for one thousand species.
arXiv Detail & Related papers (2023-11-03T17:45:18Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
Climate change is a major driver of biodiversity loss.
There are significant knowledge gaps about the distribution of species.
We propose an approach leveraging computer vision to improve species distribution modelling.
arXiv Detail & Related papers (2023-05-01T20:27:11Z) - Exploring Deep Models for Practical Gait Recognition [11.185716724976414]
We present a unified perspective to explore how to construct deep models for state-of-the-art outdoor gait recognition.
Specifically, we challenge the stereotype of shallow gait models and demonstrate the superiority of explicit temporal modeling.
The proposed CNN-based DeepGaitV2 series and Transformer-based SwinGait series exhibit significant performance improvements on Gait3D and GREW.
arXiv Detail & Related papers (2023-03-06T17:19:28Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance.
In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier(RPC) demonstrate significantly different transferability when facing large domain gap.
arXiv Detail & Related papers (2020-09-17T07:39:52Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.