ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
- URL: http://arxiv.org/abs/2504.08713v2
- Date: Tue, 15 Apr 2025 22:08:45 GMT
- Title: ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
- Authors: Sahil Sethi, David Chen, Thomas Statchen, Michael C. Burkhart, Nipun Bhandari, Bashar Ramadan, Brett Beaulieu-Jones,
- Abstract summary: ProtoECGNet is a prototype deep learning model for interpretable, multilabel ECG classification.<n>We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset.<n>ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification.
- Score: 0.21079694661943607
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Democratizing Pathological Image Segmentation with Lay Annotators via
Molecular-empowered Learning [20.11220024755348]
We propose a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators.
Our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators.
Our method democratizes the development of a pathological segmentation deep model to the lay annotator level.
arXiv Detail & Related papers (2023-05-31T16:54:47Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
We propose an architecture for image stratification based on a conditional variational autoencoder.
We use a continuous latent space to represent the continuum of disorders and find clusters during training, which can then be used for image/patient stratification.
We demonstrate that our method outperforms baselines in terms of kNN accuracy measured on a classification task against a standard VAE.
arXiv Detail & Related papers (2022-09-25T17:55:31Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes.
We propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of auto-encoder (AE) and prototype learning.
Results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition.
arXiv Detail & Related papers (2022-07-05T16:25:34Z) - Development of Interpretable Machine Learning Models to Detect
Arrhythmia based on ECG Data [0.0]
This thesis builds Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) classifiers based on state-of-the-art models.
Both global and local interpretability methods are exploited to understand the interaction between dependent and independent variables.
It was found that Grad-Cam was the most effective interpretability technique at explaining predictions of proposed CNN and LSTM models.
arXiv Detail & Related papers (2022-05-05T17:29:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Weakly Supervised 3D Classification of Chest CT using Aggregated
Multi-Resolution Deep Segmentation Features [5.938730586521215]
Weakly supervised disease classification of CT imaging suffers from poor localization owing to case-level annotations.
We propose a medical classifier that leverages semantic structural concepts learned via multi-resolution segmentation feature maps.
arXiv Detail & Related papers (2020-10-31T00:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.