Towards Personalized Conversational Sales Agents : Contextual User Profiling for Strategic Action
- URL: http://arxiv.org/abs/2504.08754v3
- Date: Wed, 16 Apr 2025 07:59:48 GMT
- Title: Towards Personalized Conversational Sales Agents : Contextual User Profiling for Strategic Action
- Authors: Tongyoung Kim, Jeongeun Lee, Soojin Yoon, Sunghwan Kim, Dongha Lee,
- Abstract summary: We introduce Conversational Sales (CSales), a novel task that unifies preference elicitation, recommendation, and persuasion.<n>For a realistic evaluation of CSales, we present CSUser, an LLM-based user simulator constructed from real-world data.<n>We also propose CSI, a conversational sales agent that proactively infers contextual profiles through dialogue for personalized action planning.
- Score: 12.637812936971049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational Recommender Systems (CRSs) aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To bridge this gap, we introduce Conversational Sales (CSales), a novel task that unifies preference elicitation, recommendation, and persuasion to better support user decision-making. For a realistic evaluation of CSales, we present CSUser, an LLM-based user simulator constructed from real-world data, modeling diverse user profiles with needs and personalities. Additionally, we propose CSI, a conversational sales agent that proactively infers contextual profiles through dialogue for personalized action planning. Extensive experiments demonstrate that CSUser effectively replicates real-world users and emphasize the importance of contextual profiling for strategic action selection, ultimately driving successful purchases in e-commerce.
Related papers
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations.
We propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs.
arXiv Detail & Related papers (2025-04-29T06:37:30Z) - Exploring Personality-Aware Interactions in Salesperson Dialogue Agents [21.282523537612477]
This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents.
Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies.
arXiv Detail & Related papers (2025-04-25T04:10:25Z) - Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)
The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.
Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward [11.495697919066341]
Policy agents must be able to personalize their behavior to suit a user's preferences, personality, and attributes.<n>Current training methods like Reinforcement Learning from Human Feedback (RLHF) prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized interactions.<n>We propose to incorporate an intrinsic motivation to improve the conversational agents's model of the user as an additional reward alongside multi-turn RLHF.
arXiv Detail & Related papers (2025-04-04T06:35:02Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
Existing conversational recommender systems often overlook users' lack of background knowledge, focusing solely on gathering preferences.
We introduce SalesOps, a framework that facilitates the simulation and evaluation of such systems.
We build SalesBot and ShopperBot, a pair of LLM-powered agents that can simulate either side of the framework.
arXiv Detail & Related papers (2023-10-26T19:44:06Z) - Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue [80.51690477289418]
Conversational recommender systems (CRSs) learn user representation and provide accurate recommendations based on dialogue context, but rely on external knowledge.
Large language models (LLMs) generate responses that mimic pre-sales dialogues after fine-tuning, but lack domain-specific knowledge for accurate recommendations.
This paper investigates the effectiveness of combining LLM and CRS in E-commerce pre-sales dialogues.
arXiv Detail & Related papers (2023-10-23T07:00:51Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - U-NEED: A Fine-grained Dataset for User Needs-Centric E-commerce
Conversational Recommendation [59.81301478480005]
We construct a user needs-centric E-commerce conversational recommendation dataset (U-NEED) from real-world E-commerce scenarios.
U-NEED consists of 3 types of resources: (i) 7,698 fine-grained annotated pre-sales dialogues in 5 top categories (ii) 333,879 user behaviors and (iii) 332,148 product knowledges.
arXiv Detail & Related papers (2023-05-05T01:44:35Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - User-Centric Conversational Recommendation with Multi-Aspect User
Modeling [47.310579802092384]
We propose a User-Centric Conversational Recommendation (UCCR) model, which returns to the essence of user preference learning in CRS tasks.
A multi-view preference mapper is conducted to learn the intrinsic correlations among different views in current and historical sessions.
The learned multi-aspect multi-view user preferences are then used for the recommendation and dialogue generation.
arXiv Detail & Related papers (2022-04-20T07:08:46Z) - Conversational Recommendation: Theoretical Model and Complexity Analysis [6.084774669743511]
We present a theoretical, domain-independent model of conversational recommendation.
We show that finding an efficient conversational strategy is NP-hard.
We also show that catalog characteristics can strongly influence the efficiency of individual conversational strategies.
arXiv Detail & Related papers (2021-11-10T09:05:52Z) - A Cooperative Memory Network for Personalized Task-oriented Dialogue
Systems with Incomplete User Profiles [55.951126447217526]
We study personalized Task-oriented Dialogue Systems without assuming that user profiles are complete.
We propose a Cooperative Memory Network (CoMemNN) that has a novel mechanism to gradually enrich user profiles.
CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3.06% in terms of response selection accuracy.
arXiv Detail & Related papers (2021-02-16T18:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.