Exploring Personality-Aware Interactions in Salesperson Dialogue Agents
- URL: http://arxiv.org/abs/2504.18058v1
- Date: Fri, 25 Apr 2025 04:10:25 GMT
- Title: Exploring Personality-Aware Interactions in Salesperson Dialogue Agents
- Authors: Sijia Cheng, Wen-Yu Chang, Yun-Nung Chen,
- Abstract summary: This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents.<n>Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies.
- Score: 21.282523537612477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of dialogue agents into the sales domain requires a deep understanding of how these systems interact with users possessing diverse personas. This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents. Through large-scale testing and analysis, we assess the pre-trained agent's effectiveness, adaptability, and personalization capabilities across a wide range of MBTI-defined user types. Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies to better align with varying personality traits. This work not only provides actionable insights for building more adaptive and user-centric conversational systems in the sales domain but also contributes broadly to the field by releasing persona-defined user simulators. These simulators, unconstrained by domain, offer valuable tools for future research and demonstrate the potential for scaling personalized dialogue systems across diverse applications.
Related papers
- Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)<n>The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.<n> Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - Investigating the effect of Mental Models in User Interaction with an Adaptive Dialog Agent [27.75972750138208]
Mental models play an important role in whether user interaction with intelligent systems is successful or not.
We show that users have a variety of conflicting mental models about such systems.
We show that adapting a dialog agent's behavior to better align with users' mental models, even when done implicitly, can improve perceived usability, dialog efficiency, and success.
arXiv Detail & Related papers (2024-08-26T09:57:19Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Unveiling the Impact of Multi-Modal Interactions on User Engagement: A Comprehensive Evaluation in AI-driven Conversations [17.409790984399052]
This paper explores the impact of multi-modal interactions, which incorporate images and audio alongside text, on user engagement.
Our findings reveal a significant enhancement in user engagement with multi-modal interactions compared to text-only dialogues.
Results suggest that multi-modal interactions optimize cognitive processing and facilitate richer information comprehension.
arXiv Detail & Related papers (2024-06-21T09:26:55Z) - CloChat: Understanding How People Customize, Interact, and Experience
Personas in Large Language Models [15.915071948354466]
CloChat is an interface supporting easy and accurate customization of agent personas in large language models.
Results indicate that participants formed emotional bonds with the customized agents, engaged in more dynamic dialogues, and showed interest in sustaining interactions.
arXiv Detail & Related papers (2024-02-23T11:25:17Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Few-Shot Structured Policy Learning for Multi-Domain and Multi-Task
Dialogues [0.716879432974126]
Graph neural networks (GNNs) show a remarkable superiority by reaching a success rate above 80% with only 50 dialogues, when learning from simulated experts.
We suggest to concentrate future research efforts on bridging the gap between human data, simulators and automatic evaluators in dialogue frameworks.
arXiv Detail & Related papers (2023-02-22T08:18:49Z) - Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems [50.57882213439553]
Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
arXiv Detail & Related papers (2022-10-11T17:57:23Z) - Attention over Parameters for Dialogue Systems [69.48852519856331]
We learn a dialogue system that independently parameterizes different dialogue skills, and learns to select and combine each of them through Attention over Parameters (AoP)
The experimental results show that this approach achieves competitive performance on a combined dataset of MultiWOZ, In-Car Assistant, and Persona-Chat.
arXiv Detail & Related papers (2020-01-07T03:10:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.