Towards scientific machine learning for granular material simulations -- challenges and opportunities
- URL: http://arxiv.org/abs/2504.08766v1
- Date: Tue, 01 Apr 2025 09:03:59 GMT
- Title: Towards scientific machine learning for granular material simulations -- challenges and opportunities
- Authors: Marc Fransen, Andreas Fürst, Deepak Tunuguntla, Daniel N. Wilke, Benedikt Alkin, Daniel Barreto, Johannes Brandstetter, Miguel Angel Cabrera, Xinyan Fan, Mengwu Guo, Bram Kieskamp, Krishna Kumar, John Morrissey, Jonathan Nuttall, Jin Ooi, Luisa Orozco, Stefanos-Aldo Papanicolopulos, Tongming Qu, Dingena Schott, Takayuki Shuku, WaiChing Sun, Thomas Weinhart, Dongwei Ye, Hongyang Cheng,
- Abstract summary: Granular materials govern the behaviour of granular systems.<n>While particle-scale simulations provide insights into these interactions, their computational cost is often prohibitive.<n>This position paper emerged from a recent Lorentz Center Workshop on "Machine Learning for Discrete Granular Media"
- Score: 7.865643764194596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Micro-scale mechanisms, such as inter-particle and particle-fluid interactions, govern the behaviour of granular systems. While particle-scale simulations provide detailed insights into these interactions, their computational cost is often prohibitive. Attended by researchers from both the granular materials (GM) and machine learning (ML) communities, a recent Lorentz Center Workshop on "Machine Learning for Discrete Granular Media" brought the ML community up to date with GM challenges. This position paper emerged from the workshop discussions. We define granular materials and identify seven key challenges that characterise their distinctive behaviour across various scales and regimes, ranging from gas-like to fluid-like and solid-like. Addressing these challenges is essential for developing robust and efficient digital twins for granular systems in various industrial applications. To showcase the potential of ML to the GM community, we present classical and emerging machine/deep learning techniques that have been, or could be, applied to granular materials. We reviewed sequence-based learning models for path-dependent constitutive behaviour, followed by encoder-decoder type models for representing high-dimensional data. We then explore graph neural networks and recent advances in neural operator learning. Lastly, we discuss model-order reduction and probabilistic learning techniques for high-dimensional parameterised systems, which are crucial for quantifying uncertainties arising from physics-based and data-driven models. We present a workflow aimed at unifying data structures and modelling pipelines and guiding readers through the selection, training, and deployment of ML surrogates for granular material simulations. Finally, we illustrate the workflow's practical use with two representative examples, focusing on granular materials in solid-like and fluid-like regimes.
Related papers
- Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics [1.1510009152620668]
An underexplored aspect of machine learning is how to develop minimally-optimal representations.<n>Our own view is that ML-based modeling should be based in use of computational units that are fundamentally interpretable by design.<n>We show, in the context of lumped catchment modeling, that physical interpretability and predictive performance can both be achieved using a relatively parsimonious distributed-state network.
arXiv Detail & Related papers (2024-12-06T08:30:01Z) - Machine Learning Aided Modeling of Granular Materials: A Review [3.8914237516698726]
Machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials.
This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials.
Different neural networks for learning the behaviour of granular materials will be reviewed and compared.
macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed.
arXiv Detail & Related papers (2024-10-18T15:53:04Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
rheological equations relate internal stresses and deformations in complex fluids.
Data-driven models provide accessible alternatives to expensive first-principles models.
Development of similar models for complex fluids has lagged.
arXiv Detail & Related papers (2022-10-10T04:35:31Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
We consider a case study the macroscopic motion emerging from a system of globally coupled maps.
We build a coarse-grained Markov process for the macroscopic dynamics both with a machine learning approach and with a direct numerical computation of the transition probability of the coarse-grained process.
We are able to infer important information about the effective dimension of the attractor, the persistence of memory effects and the multi-scale structure of the dynamics.
arXiv Detail & Related papers (2020-11-08T15:38:12Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.