論文の概要: Adaptive Shrinkage Estimation For Personalized Deep Kernel Regression In Modeling Brain Trajectories
- arxiv url: http://arxiv.org/abs/2504.08840v1
- Date: Thu, 10 Apr 2025 19:13:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:07.157907
- Title: Adaptive Shrinkage Estimation For Personalized Deep Kernel Regression In Modeling Brain Trajectories
- Title(参考訳): 脳軌道のモデル化におけるパーソナライズされたディープカーネル回帰の適応的収縮推定
- Authors: Vasiliki Tassopoulou, Haochang Shou, Christos Davatzikos,
- Abstract要約: そこで我々は,脳バイオマーカーの予測を行うための,パーソナライズされたディープカーネル回帰フレームワークを提案する。
我々のアプローチでは、大きなコホートから脳の軌跡をキャプチャする集団モデルと、個々の軌跡をキャプチャする対象特異的モデルという2つの重要な要素を統合している。
- 参考スコア(独自算出の注目度): 4.605794646684244
- License:
- Abstract: Longitudinal biomedical studies monitor individuals over time to capture dynamics in brain development, disease progression, and treatment effects. However, estimating trajectories of brain biomarkers is challenging due to biological variability, inconsistencies in measurement protocols (e.g., differences in MRI scanners), scarcity, and irregularity in longitudinal measurements. Herein, we introduce a novel personalized deep kernel regression framework for forecasting brain biomarkers, with application to regional volumetric measurements. Our approach integrates two key components: a population model that captures brain trajectories from a large and diverse cohort, and a subject-specific model that captures individual trajectories. To optimally combine these, we propose Adaptive Shrinkage Estimation, which effectively balances population and subject-specific models. We assess our model's performance through predictive accuracy metrics, uncertainty quantification, and validation against external clinical studies. Benchmarking against state-of-the-art statistical and machine learning models -- including linear mixed effects models, generalized additive models, and deep learning methods -- demonstrates the superior predictive performance of our approach. Additionally, we apply our method to predict trajectories of composite neuroimaging biomarkers, which highlights the versatility of our approach in modeling the progression of longitudinal neuroimaging biomarkers. Furthermore, validation on three external neuroimaging studies confirms the robustness of our method across different clinical contexts. We make the code available at https://github.com/vatass/AdaptiveShrinkageDKGP.
- Abstract(参考訳): 縦断的生医学研究は、時間とともに個人が脳の発達、疾患の進行、治療効果のダイナミクスを捉えている。
しかし,脳バイオマーカーの軌道推定は生物学的多様性,計測プロトコルの不整合(MRIスキャナの違いなど),希少性,縦断測定における不規則性などにより困難である。
そこで本研究では,脳バイオマーカーの予測のためのパーソナライズされたディープカーネル回帰フレームワークを提案する。
我々のアプローチは2つの重要な要素を統合している。大きな、多様なコホートから脳の軌跡を捉える集団モデルと、個々の軌跡を捉える主題固有のモデルである。
これらを最適に組み合わせるために,適応収縮推定法を提案する。
我々は,予測精度測定,不確実性定量化,外部臨床研究に対する検証を通じて,モデルの性能を評価する。
線形混合効果モデル、一般化付加モデル、ディープラーニングメソッドを含む最先端の統計および機械学習モデルに対するベンチマークは、我々のアプローチの優れた予測性能を示している。
さらに,本手法を複合型ニューロイメージングバイオマーカーの軌跡予測に応用し,縦型ニューロイメージングバイオマーカーの進行をモデル化するためのアプローチの汎用性を強調した。
さらに,3つの外部神経イメージング研究に対する検証により,臨床状況の異なる方法のロバスト性が確認された。
コードはhttps://github.com/vatass/AdaptiveShrinkageDKGPで公開しています。
関連論文リスト
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
本研究の目的は、ヒト脳組織において最も好ましい物質モデルを特定することである。
我々は、広く受け入れられている古典モデルの一般化に、人工ニューラルネットワークと多重回帰法を適用した。
論文 参考訳(メタデータ) (2023-10-16T18:49:59Z) - Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer
Learning and Imbalance Handling in Deep Learning Models [0.0]
MRIデータを用いた脳腫瘍分類のための新しい深層学習手法であるTransfer Learning-CNNを提案する。
公開のBrain MRIデータセットを活用することで、実験はさまざまな腫瘍タイプを分類するための様々な転写学習モデルを評価した。
VGG-16とCNNを組み合わせた提案手法は,96%の精度で,代替手法をはるかに上回った。
論文 参考訳(メタデータ) (2023-08-13T17:30:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression
for Real-World Clinical Applications [0.9999629695552196]
本稿では,アルツハイマー病の進行を予測するための新しいマルチタスク深層学習モデルを提案する。
本モデルでは,3次元畳み込みニューラルネットワークの高次元MRI特徴を他のデータモダリティと統合する。
論文 参考訳(メタデータ) (2022-03-17T05:42:00Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。