The temperature dependent thermal vector potential in spinor Boltzmann equation
- URL: http://arxiv.org/abs/2504.08845v1
- Date: Thu, 10 Apr 2025 23:24:52 GMT
- Title: The temperature dependent thermal vector potential in spinor Boltzmann equation
- Authors: Zheng-Chuan Wang,
- Abstract summary: We derive a temperature dependent damping force based on the spinor Boltzmann equation (SBE)<n>It is shown that the thermal potential originates from the scattering of conduction electrons and impurity or other scattering mechanisms.<n>The other physical observables such as charge current and spin current are also explored.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The thermal scalar and vector potential were introduced to investigate the thermal transport under a temperature gradient in terms of linear response theory[1,2]. However, the microscopic origin of these phenomenological thermal potentials had not been addressed clearly. In this manuscript, we try to derive a temperature dependent damping force based on the spinor Boltzmann equation (SBE), and relate it with the thermal gauge potential, which is exactly the temperature dependent thermal scalar and vector potential. It is shown that the thermal potential originates from the scattering of conduction electrons and impurity or other scattering mechanisms. We also derive a temperature dependent inverse relaxation time, which depends on momentum, it is different from the usual constant relaxation time. We evaluate the temperature dependent damping force by an approximated analytical solution of SBE. The other physical observable such as charge current and spin current are also explored.
Related papers
- Squeezing generation crossing a mean-field critical point: Work statistics, irreversibility and critical fingerprints [44.99833362998488]
In this work, we investigate the critical fingerprints appearing in key thermodynamical quantities for a mean-field critical system.<n>The presence of a mean-field critical point in a finite-time cycle leads to constant irreversible work even in the limit of infinitely slow driving.<n>We find that the probability of observing negative work values, corresponding to negative irreversible entropy, is inversely proportional to the time the system remains near to the critical point.
arXiv Detail & Related papers (2025-01-20T19:00:01Z) - Spin squeezing: Thermal behavior and distribution on excited states [0.0]
We investigate the spin-squeezing behavior under thermal effects in a one-dimensional transverse field XY model with spin-1/2.<n>At the thermal factorized field, a transition from a thermal squeezed state to an unsqueezed state occurs at a specific temperature called the coherent temperature.
arXiv Detail & Related papers (2024-12-05T19:12:43Z) - The temperature dependent thermal potential in Quantum Boltzmann equation [0.0]
We express the thermal scalar and vector potential by the distribution function in damping force, which originates from the scattering of conduction electrons.
The influence from quantum correction terms in QBE are also considered, which contribute not only to the damping force, but also to the anomalous velocity in the drift term.
arXiv Detail & Related papers (2024-10-02T09:19:10Z) - Thermoelectric phenomena in an antiferromagnetic helix: Role of electric
field [0.0]
The charge and spin-dependent thermoelectric responses are investigated on a single-helical molecule possessing a collinear antiferromagnetic spin arrangement.
A non-equilibrium Green's function formalism is employed to study the thermoelectric phenomena.
The present proposition shows a favorable spin-dependent thermoelectric response compared to the charge counterpart.
arXiv Detail & Related papers (2023-05-09T16:15:45Z) - Quantum kinetic theory of nonlinear thermal current [1.4174475093445236]
We develop the quantum kinetic theory framework to describe thermal transport in presence of a temperature gradient.
We show that the intrinsic thermal current is determined by the band geometric quantities and is non-zero in systems where both the space inversion and time-reversal symmetries are broken.
arXiv Detail & Related papers (2022-11-03T15:28:11Z) - Quantum theory, thermal gradients and the curved Euclidean space [0.0]
We develop an equivalence between the spatial variation of temperature in a thermal bath and the curvature of the Euclidean space.
The equivalence is substantiated by analyzing the Polyakov loop, the partition function and the periodicity of the correlation function.
The Dirac equation for an external Dirac spinor, traversing in a thermal bath with spatial thermal gradients, is solved in the curved Euclidean space.
arXiv Detail & Related papers (2022-06-27T14:10:09Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.