Tunable Magnon Polaritons via Eddy-Current-Induced Dissipation in Metallic-Banded YIG Spheres
- URL: http://arxiv.org/abs/2504.08917v1
- Date: Fri, 11 Apr 2025 18:48:31 GMT
- Title: Tunable Magnon Polaritons via Eddy-Current-Induced Dissipation in Metallic-Banded YIG Spheres
- Authors: Tatsushi Uno, Shugo Yoshii, Sotaro Mae, Ei Shigematsu, Ryo Ohshima, Yuichiro Ando, Masashi Shiraishi,
- Abstract summary: We show a robust method to tune magnon dissipation in yttrium iron garnet spheres by equipping a metallic band around the sphere's equator.<n>We precisely control the magnon-photon coupling state, approaching the critical coupling condition.<n>These results establish the YIG-metallic-band platform as a versatile and practical approach for engineering tunable magnon-polariton systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a robust method to dynamically tune magnon dissipation in yttrium iron garnet spheres by equipping a metallic band around the sphere's equator, enabling precise control over magnon-photon coupling states. The collective magnetization dynamics in the YIG sphere induce circular eddy currents in the metallic band, whose magnitude can be systematically varied by adjusting the angle between the metallic band plane and an external static magnetic field. This angular dependence yields a pronounced modulation of the ferromagnetic resonance (FMR) linewidth, facilitating seamless transitions between the Purcell and strong coupling regimes without altering photon cavity parameters. Systematic FMR and cavity spectroscopy measurements confirm that eddy-current-induced losses govern the primary mechanism behind the observed tunable damping. By achieving extensive periodic-angular dependence of magnon relaxation rate, we precisely control the magnon-photon coupling state, approaching the critical coupling condition. These results establish the YIG-metallic-band platform as a versatile and practical approach for engineering tunable magnon-polariton systems and advancing magnonic applications, including those exploring non-Hermitian magnonics.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.<n>We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.<n>We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - External Control over Magnon-Magnon Coupling in a Two-Dimensional Array of Square Shaped Nanomagnets [0.0]
This study delves into the tunable magnon-magnon coupling within a two-dimensional array of Ni80Fe20 square nanomagnets.
The ability to modulate coupling strengths in this system highlights its potential for developing flexible and adaptive magnonic devices.
arXiv Detail & Related papers (2024-11-11T10:33:50Z) - Magnetoresistance oscillations induced by geometry in a two-dimensional quantum ring [0.0]
We consider a GaAs device having an average radius of $800hspace0.05cmtextnm$ in different regimes of subband occupation at non-zero temperature.
We explore how the modified surface affects the Van-Hoove conductance singularities and the magnetoresistance interference patterns resulting from the Aharonov-Bohm oscillations of different frequencies.
arXiv Detail & Related papers (2024-06-21T13:54:40Z) - Controlling magnon-photon coupling in a planar geometry [0.0]
We study magnon-photon coupling using a high-quality factor split-ring resonator.
We find that the coupling is stronger for spheres with a larger diameter as predicted by theory.
arXiv Detail & Related papers (2024-02-05T15:01:57Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Optical sensing of magnons via the magnetoelastic displacement [7.298195012362328]
We show how to measure a steady-state magnon population in a magnetostatic mode of a ferromagnet or ferrimagnet, such as yttrium iron garnet.
We adopt an optomechanical approach and utilize the magnetoelasticity of the ferromagnet.
arXiv Detail & Related papers (2021-11-16T11:23:46Z) - Optomagnonics in dispersive media: magnon-photon coupling enhancement at
the epsilon-near-zero frequency [0.0]
Single-magnon photon optomagnonic coupling can be comparable to the uniform magnon's frequency for small magnetic volumes.
Non-linear energy spectrum intrinsic to this coupling regime regime can be probed via the characteristic multiple magnon sidebands in the photon power spectrum.
arXiv Detail & Related papers (2021-10-06T18:00:22Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.