Nanoscale Magnetic Resonance Imaging and Control of a Strongly Interacting Dipolar System
- URL: http://arxiv.org/abs/2506.11920v2
- Date: Mon, 28 Jul 2025 00:22:52 GMT
- Title: Nanoscale Magnetic Resonance Imaging and Control of a Strongly Interacting Dipolar System
- Authors: Piotr Put, Nathaniel T. Leitao, Christina Spaegele, Haoyang Gao, Oksana Makarova, Bartholomeus Machielse, Hengyun Zhou, Federico Capasso, Leigh S. Martin, Hongkun Park, Mikhail D. Lukin,
- Abstract summary: We introduce a method for nanoscale MRI by combining strong, time-dependent magnetic field gradients with global coherent control over a dense ensemble of electron spins in diamond.<n>Our results open the door for robust control of metrologically useful entanglement and nanoscale imaging of materials and biological systems under ambient conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic resonance imaging (MRI) is a foundational tool in the physical and life sciences, yet conventional implementations are typically limited to macroscopic spatial resolution. Here, we introduce a method for nanoscale MRI by combining strong, time-dependent magnetic field gradients with global coherent control over a dense ensemble of electron spins in diamond. This approach enables spatially structured manipulation of spin dynamics, allowing us to generate and track nanoscale spin textures - patterns of spin polarization - that evolve under engineered many-body dipolar interactions. By tuning the rotational symmetry of the dipolar exchange interactions, we observe pronounced sensitivity of the spin dynamics to the microscopic structure of the polarization, which we resolve through nanoscale MRI. Our results open the door for robust control of metrologically useful entanglement and nanoscale imaging of materials and biological systems under ambient conditions.
Related papers
- Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Interradical motion can push magnetosensing precision towards quantum limits [0.0]
We show how structured molecular motion modulating interradical interactions can push precision in estimating magnetic field directions closer to the quantum Cram'er-Rao bound.<n>This insight opens the possibility of channeling the underlying physical principles of motion-induced modulation of electron spin-spin interactions towards devising efficient handles.
arXiv Detail & Related papers (2025-06-26T15:38:56Z) - Unlocking Photon Magnon Interplay via Saturation Magnetization [0.0]
Photon magnon hybrid systems present a promising platform for the development of next generation devices in quantum information processing and quantum sensing technologies.<n>We investigate the control of photon magnon coupling (PMC) strength through systematic variation of the saturation magnetization in a planar hexagonal ring resonator (HRR) integrated with a yttrium iron garnet (YIG) thin film configuration.
arXiv Detail & Related papers (2025-05-17T12:18:41Z) - Electron Spin Resonance Spectroscopy in a Transmission Electron Microscope [0.0]
integration will facilitate in-situ studies of spin systems and their dynamics, quantum materials, radicals, electrochemical reactions, and radiation damage.
This development marks a significant technological advancement toward microwave-controlled quantum spin studies with a highly controlled electron probe at the nanoscale.
arXiv Detail & Related papers (2024-08-29T12:42:13Z) - Optically-Trapped Nanodiamond-Relaxometry Detection of Nanomolar Paramagnetic Spins in Aqueous Environments [2.1352459760485796]
Nitrogen-Vacancy center in fluorescent nanodiamonds (FNDs) has emerged as a good candidate to sense temperature, pH, and paramagnetic species at the nanoscale.
We show that optically-trapped FNDs enable highly reproducible nanomolar sensitivity to the paramagnetic ion.
arXiv Detail & Related papers (2024-01-30T19:00:56Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Nanometer-Scale Nuclear Magnetic Resonance Diffraction with Sub-\AA
ngstrom Precision [0.0]
We present a new approach to nanoMRI utilizing nuclear magnetic resonance diffraction (NMRd)
The realization of NMRd on the atomic scale would create a powerful new methodology for materials characterization utilizing the spectroscopic capabilities of NMR.
arXiv Detail & Related papers (2022-04-01T05:53:52Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.