論文の概要: AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
- arxiv url: http://arxiv.org/abs/2504.08942v1
- Date: Fri, 11 Apr 2025 19:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:03.726639
- Title: AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
- Title(参考訳): AgentRewardBench: Web Agent Trajectoriesの自動評価評価
- Authors: Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejandra Zambrano, Karolina Stańczak, Peter Shaw, Christopher J. Pal, Siva Reddy,
- Abstract要約: 我々は,LLM審査員によるWebエージェント評価の有効性を評価する最初のベンチマークであるAgentRewardBenchを提案する。
ベンチマークを用いて,12名のLLM審査員を評価し,全てのベンチマークでLLMが排他的でないことを発見した。
また、一般的なベンチマークで使用されるルールベースの評価は、Webエージェントの成功率を過小評価する傾向にあることも見出した。
- 参考スコア(独自算出の注目度): 59.214178488091584
- License:
- Abstract: Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
- Abstract(参考訳): Webエージェントを使えば、ユーザは自然言語による対話を通じてWebブラウザ上でタスクを実行できる。
Webエージェントのトラジェクトリを評価することは重要な問題であり、エージェントがタスクを完了したかどうかを判断するのに役立ちます。
ルールベースの手法はこの目的のために広く使われているが、新しいタスクに拡張することは困難であり、常に成功した軌道を認識するとは限らない。
人間の評価によって高い精度を達成できるかもしれませんが、プロセスは大幅に遅く、コストも高くなります。
LLMによる自動評価は、新しいルールを設計し、手動で軌道をアノテートすることの難しさを回避し、より高速で費用対効果の高い評価を可能にする。
しかし,Webエージェントの評価にどの程度効果的かは明らかでない。
そこで本研究では,LLM審査員によるWebエージェント評価の有効性を評価する最初のベンチマークであるAgentRewardBenchを提案する。
AgentRewardBenchには、5つのベンチマークと4つのLLMにわたる1302のトラジェクトリが含まれている。
AgentRewardBenchの各軌道は専門家によってレビューされ、エージェントの成功、副作用、反復性に関する質問に答える。
ベンチマークを用いて,12名のLLM審査員を評価し,全てのベンチマークでLLMが排他的でないことを発見した。
また、一般的なベンチマークで用いられるルールベースの評価は、Webエージェントの成功率を過小評価する傾向にあり、ルールベースの評価の重要な弱点と、より柔軟な自動評価を開発する必要性を強調している。
ベンチマークは、https://agent-reward-bench.github.ioでリリースしています。
関連論文リスト
- The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
本稿では,Webエージェント研究のためのBrowserGymベースの拡張エコシステムを提案する。
大規模なマルチベンチマークWebエージェント実験を初めて実施し、6つのWebエージェントベンチマークで6つの最先端LCMの性能を比較した。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
本研究は, 観察空間と行動空間を簡略化することで, LLMベースのWebエージェントを強化する。
AgentOccam は以前の最先端および同時処理を 9.8 (+29.4%) と 5.9 (+15.8%) で上回っている。
論文 参考訳(メタデータ) (2024-10-17T17:50:38Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - $τ$-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains [43.43344028212623]
$tau$-benchは、ユーザと言語エージェント間の動的会話をエミュレートするベンチマークである。
我々は、会話の最後にデータベースの状態と注釈付きゴール状態を比較する、効率的で忠実な評価プロセスを採用する。
論文 参考訳(メタデータ) (2024-06-17T19:33:08Z) - WebSuite: Systematically Evaluating Why Web Agents Fail [2.200477647229223]
我々は、ジェネラリストWebエージェントの最初の診断ベンチマークであるWebSuiteについて説明する。
このベンチマークスイートは、ボタンをクリックするなどの個々のタスクと、カートにアイテムを追加するなどのエンドツーエンドタスクの両方で構成されている。
我々は、テキストベースとマルチモーダルの2つの一般的なジェネラリストWebエージェントを評価し、各エージェントに固有の弱点を特定する。
論文 参考訳(メタデータ) (2024-06-01T00:32:26Z) - Auto-Arena: Automating LLM Evaluations with Agent Peer Battles and Committee Discussions [77.66677127535222]
Auto-ArenaはLLMエージェントを使用した評価プロセス全体を自動化した革新的なフレームワークである。
我々の実験では、Auto-Arenaは92.14%の相関関係を示し、以前の専門家が注釈付けしたベンチマークをすべて上回っている。
論文 参考訳(メタデータ) (2024-05-30T17:19:19Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuestは、ベンチマークとメトリクスがモジュール化され、十分にドキュメント化され使いやすいAPIを通じて容易に利用できるフレームワークである。
課題を解決しながら LLM エージェントの進捗を確実に追跡できる2つの新しい評価指標を提供する。
一般的な障害点を特定し,エージェントアーキテクチャを洗練し,大幅な性能向上を実現する2つのユースケースにおけるメトリクスの有用性を実証する。
論文 参考訳(メタデータ) (2024-04-09T16:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。