論文の概要: WebSuite: Systematically Evaluating Why Web Agents Fail
- arxiv url: http://arxiv.org/abs/2406.01623v1
- Date: Sat, 1 Jun 2024 00:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:31:36.184279
- Title: WebSuite: Systematically Evaluating Why Web Agents Fail
- Title(参考訳): WebSuite: なぜWebエージェントが失敗するのかをシステム的に評価する
- Authors: Eric Li, Jim Waldo,
- Abstract要約: 我々は、ジェネラリストWebエージェントの最初の診断ベンチマークであるWebSuiteについて説明する。
このベンチマークスイートは、ボタンをクリックするなどの個々のタスクと、カートにアイテムを追加するなどのエンドツーエンドタスクの両方で構成されている。
我々は、テキストベースとマルチモーダルの2つの一般的なジェネラリストWebエージェントを評価し、各エージェントに固有の弱点を特定する。
- 参考スコア(独自算出の注目度): 2.200477647229223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe WebSuite, the first diagnostic benchmark for generalist web agents, designed to systematically evaluate why agents fail. Advances in AI have led to the rise of numerous web agents that autonomously operate a browser to complete tasks. However, most existing benchmarks focus on strictly measuring whether an agent can or cannot complete a task, without giving insight on why. In this paper, we 1) develop a taxonomy of web actions to facilitate identifying common failure patterns, and 2) create an extensible benchmark suite to assess agents' performance on our taxonomized actions. This benchmark suite consists of both individual tasks, such as clicking a button, and end-to-end tasks, such as adding an item to a cart, and is designed such that any failure of a task can be attributed directly to a failure of a specific web action. We evaluate two popular generalist web agents, one text-based and one multimodal, and identify unique weaknesses for each agent. Because WebSuite can disaggregate task failures into specific action failures, this enables granular identification of which UX flows an individual agent has trouble with and immediately highlights promising avenues for improvement. These findings highlight the need for more focused benchmarking on where web agents go wrong to effectively improve agents beyond their weaker performance today.
- Abstract(参考訳): 汎用Webエージェントのための最初の診断ベンチマークであるWebSuiteについて述べる。
AIの進歩は、タスクを完了するためにブラウザを自律的に操作する多数のWebエージェントの台頭につながっている。
しかし、既存のベンチマークのほとんどは、エージェントがタスクを完了できるかどうかを、理由を知ることなく厳密に測定することに焦点を当てている。
本稿では,
1)共通の障害パターンの識別を容易にするためのWebアクションの分類法を開発し、
2) 分類された行動におけるエージェントのパフォーマンスを評価するための拡張可能なベンチマークスイートを作成する。
このベンチマークスイートは、ボタンをクリックするなどの個々のタスクと、カートにアイテムを追加するといったエンドツーエンドタスクの両方で構成されており、タスクの失敗は、特定のWebアクションの失敗に直接原因付けることができるように設計されている。
我々は、テキストベースとマルチモーダルの2つの一般的なジェネラリストWebエージェントを評価し、各エージェントに固有の弱点を特定する。
WebSuiteはタスクの障害を特定のアクション障害に分解できるため、個々のエージェントが問題のあるUXフローの詳細な識別が可能になり、改善のための有望な方法がすぐに強調される。
これらの調査結果は、今日のパフォーマンスの弱さを超えて、エージェントを効果的に改善するために、Webエージェントがどこが悪いのか、より集中したベンチマークの必要性を浮き彫りにしている。
関連論文リスト
- WebCanvas: Benchmarking Web Agents in Online Environments [29.278363444725628]
WebCanvasは、Webエージェントのための革新的なオンライン評価フレームワークである。
我々は、推論のためのモジュールを備えたエージェントフレームワークをオープンソースとして公開し、コミュニティがオンライン推論と評価を行うための基盤を提供します。
ベストパフォーマンスエージェントは,Mind2Web-Liveテストセット上でのタスク成功率23.1%,タスク完了率48.8%を達成する。
論文 参考訳(メタデータ) (2024-06-18T07:58:33Z) - WILBUR: Adaptive In-Context Learning for Robust and Accurate Web Agents [1.9352015147920767]
Wilburは、微分可能なランキングモデルと新しい命令合成手法を用いるアプローチである。
そこで本研究では,代表的目標を抽出する生成的オートカリキュラムのデータに基づいてランキングモデルをトレーニング可能であることを示す。
Wilbur氏はWebVoyagerベンチマークで最先端の結果を達成し、テキストのみのモデルを全体の8%、特定のウェブサイトで最大36%上回った。
論文 参考訳(メタデータ) (2024-04-08T23:10:47Z) - WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks? [83.19032025950986]
本稿では,Webブラウザを介してソフトウェアと対話する大規模言語モデルベースエージェントについて検討する。
WorkArenaは、広く使用されているServiceNowプラットフォームに基づく33のタスクのベンチマークである。
BrowserGymは、そのようなエージェントの設計と評価のための環境である。
論文 参考訳(メタデータ) (2024-03-12T14:58:45Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models [65.18602126334716]
既存のWebエージェントは1つの入力モダリティしか処理せず、単純化されたWebシミュレータや静的なWebスナップショットでのみ評価される。
我々は,WebVoyagerを紹介した。LMM(Large Multimodal Model)を利用したWebエージェントで,現実世界のWebサイトと対話することで,エンド・ツー・エンドでのユーザ指示を完了することができる。
GPT-4(All Tools)とWebVoyager(text-only)の両方のパフォーマンスを大幅に上回る、59.1%のタスク成功率を実現していることを示す。
論文 参考訳(メタデータ) (2024-01-25T03:33:18Z) - VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks [93.85005277463802]
VisualWebArenaは、マルチモーダルWebエージェントのパフォーマンスを現実的なタスクで評価するために設計されたベンチマークである。
このベンチマークを実行するには、イメージテキスト入力を正確に処理し、自然言語命令を解釈し、ユーザが定義した目的を達成するためにウェブサイト上でアクションを実行する必要がある。
論文 参考訳(メタデータ) (2024-01-24T18:35:21Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - WebArena: A Realistic Web Environment for Building Autonomous Agents [92.3291458543633]
我々は、非常に現実的で再現可能な言語誘導エージェントのための環境を構築する。
我々は,Web上でタスクを実行するエージェントに着目し,4つの共通ドメインから完全に機能するWebサイトを持つ環境を構築する。
タスク完了の関数的正しさを評価することに焦点を当てたベンチマークタスクのセットをリリースする。
論文 参考訳(メタデータ) (2023-07-25T22:59:32Z) - A Real-World WebAgent with Planning, Long Context Understanding, and
Program Synthesis [69.15016747150868]
本稿では,WebAgentについて紹介する。WebAgentは自己経験から学習し,実際のWebサイト上でタスクを完了させるエージェントである。
WebAgentは、指示を標準のサブ命令に分解し、長いHTMLドキュメントをタスク関連スニペットに要約し、ウェブサイトで作用する計画である。
我々は、我々のモジュラーレシピが実際のWebサイトの成功を50%以上改善し、HTML-T5が様々なHTML理解タスクを解決する最良のモデルであることを実証的に実証した。
論文 参考訳(メタデータ) (2023-07-24T14:56:30Z) - Mind2Web: Towards a Generalist Agent for the Web [25.363429937913065]
Mind2Webは、Webのためのジェネラリストエージェントの開発と評価のための最初のデータセットである。
31のドメインにまたがる137のWebサイトから2,000以上のオープンエンドタスクが収集され、Mind2WebはジェネラリストWebエージェントを構築するために必要な3つの材料を提供する。
Mind2Webをベースとして,汎用的なWebエージェントを構築するために,大規模言語モデル(LLM)を最初に検討する。
論文 参考訳(メタデータ) (2023-06-09T17:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。