Large Language Model Empowered Recommendation Meets All-domain Continual Pre-Training
- URL: http://arxiv.org/abs/2504.08949v1
- Date: Fri, 11 Apr 2025 20:01:25 GMT
- Title: Large Language Model Empowered Recommendation Meets All-domain Continual Pre-Training
- Authors: Haokai Ma, Yunshan Ma, Ruobing Xie, Lei Meng, Jialie Shen, Xingwu Sun, Zhanhui Kang, Tat-Seng Chua,
- Abstract summary: CPRec is an All-domain Continual Pre-Training framework for Recommendation.<n>It holistically align LLMs with universal user behaviors through the continual pre-training paradigm.<n>We conduct experiments on five real-world datasets from two distinct platforms.
- Score: 60.38082979765664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research efforts have investigated how to integrate Large Language Models (LLMs) into recommendation, capitalizing on their semantic comprehension and open-world knowledge for user behavior understanding. These approaches predominantly employ supervised fine-tuning on single-domain user interactions to adapt LLMs for specific recommendation tasks. However, they typically encounter dual challenges: the mismatch between general language representations and domain-specific preference patterns, as well as the limited adaptability to multi-domain recommendation scenarios. To bridge these gaps, we introduce CPRec -- an All-domain Continual Pre-Training framework for Recommendation -- designed to holistically align LLMs with universal user behaviors through the continual pre-training paradigm. Specifically, we first design a unified prompt template and organize users' multi-domain behaviors into domain-specific behavioral sequences and all-domain mixed behavioral sequences that emulate real-world user decision logic. To optimize behavioral knowledge infusion, we devise a Warmup-Stable-Annealing learning rate schedule tailored for the continual pre-training paradigm in recommendation to progressively enhance the LLM's capability in knowledge adaptation from open-world knowledge to universal recommendation tasks. To evaluate the effectiveness of our CPRec, we implement it on a large-scale dataset covering seven domains and conduct extensive experiments on five real-world datasets from two distinct platforms. Experimental results confirm that our continual pre-training paradigm significantly mitigates the semantic-behavioral discrepancy and achieves state-of-the-art performance in all recommendation scenarios. The source code will be released upon acceptance.
Related papers
- A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications [28.181295575180293]
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation.
This paper presents the first comprehensive survey of personalized alignment.
We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment.
arXiv Detail & Related papers (2025-03-21T10:09:16Z) - MoLoRec: A Generalizable and Efficient Framework for LLM-Based Recommendation [48.27058675713025]
We propose a generalizable and efficient LLM-based recommendation framework MoLoRec.<n>Our approach starts by parameter-efficient fine-tuning a domain-general module with general recommendation instruction data.<n>We provide approaches to integrate the above domain-general part and domain-specific part with parameters mixture.
arXiv Detail & Related papers (2025-02-12T10:24:22Z) - Semantic Convergence: Harmonizing Recommender Systems via Two-Stage Alignment and Behavioral Semantic Tokenization [10.47505806629852]
Large language models (LLMs) are adept at discerning profound user interests from historical behaviors.<n>We propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs.<n>We design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics.
arXiv Detail & Related papers (2024-12-18T12:07:58Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.<n>To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.<n>We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Large Language Models for Intent-Driven Session Recommendations [34.64421003286209]
We introduce a novel ISR approach, utilizing the advanced reasoning capabilities of large language models (LLMs)
We introduce an innovative prompt optimization mechanism that iteratively self-reflects and adjusts prompts.
This new paradigm empowers LLMs to discern diverse user intents at a semantic level, leading to more accurate and interpretable session recommendations.
arXiv Detail & Related papers (2023-12-07T02:25:14Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.