A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
- URL: http://arxiv.org/abs/2503.17003v3
- Date: Tue, 01 Apr 2025 09:33:19 GMT
- Title: A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
- Authors: Jian Guan, Junfei Wu, Jia-Nan Li, Chuanqi Cheng, Wei Wu,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation.<n>This paper presents the first comprehensive survey of personalized alignment.<n>We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment.
- Score: 28.181295575180293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
Related papers
- Large Language Model Empowered Recommendation Meets All-domain Continual Pre-Training [60.38082979765664]
CPRec is an All-domain Continual Pre-Training framework for Recommendation.
It holistically align LLMs with universal user behaviors through the continual pre-training paradigm.
We conduct experiments on five real-world datasets from two distinct platforms.
arXiv Detail & Related papers (2025-04-11T20:01:25Z) - A Survey on Personalized and Pluralistic Preference Alignment in Large Language Models [52.91062958231693]
We present an analysis of works on personalized alignment and modeling for large language models.
We introduce a taxonomy of preference alignment techniques, including training time, inference time, and additionally, user-modeling based methods.
arXiv Detail & Related papers (2025-04-09T17:39:58Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Optimizing Large Language Models for Dynamic Constraints through Human-in-the-Loop Discriminators [0.0]
Large Language Models (LLMs) have recently demonstrated impressive capabilities across various real-world applications.
We propose a flexible framework that enables LLMs to interact with system interfaces, summarize constraint concepts, and continually optimize performance metrics.
Our framework achieved a $7.78%$ pass rate with the human discriminator and a $6.11%$ pass rate with the LLM-based discriminator.
arXiv Detail & Related papers (2024-10-19T17:27:38Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''<n>We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.<n>For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - ABC Align: Large Language Model Alignment for Safety & Accuracy [0.0]
We present ABC Align, a novel alignment methodology for Large Language Models (LLMs)
We combine a set of data and methods that build on recent breakthroughs in synthetic data generation, preference optimisation, and post-training model quantisation.
Our unified approach mitigates bias and improves accuracy, while preserving reasoning capability, as measured against standard benchmarks.
arXiv Detail & Related papers (2024-08-01T06:06:25Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - Personalisation within bounds: A risk taxonomy and policy framework for
the alignment of large language models with personalised feedback [11.895749982167375]
Large language models (LLMs) are used to generate content for a wide range of tasks, and are set to reach a growing audience in coming years.
This intensifies the need to ensure that models are aligned with human preferences and do not produce unsafe, inaccurate or toxic outputs.
Personalising LLMs through micro-level preference learning processes may result in models that are better aligned with each user.
arXiv Detail & Related papers (2023-03-09T17:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.