Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation
- URL: http://arxiv.org/abs/2504.08954v1
- Date: Fri, 11 Apr 2025 20:16:02 GMT
- Title: Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation
- Authors: Terrence Neumann, Maria De-Arteaga, Sina Fazelpour,
- Abstract summary: We introduce a series of quality checks to support early-stage deliberation about the viability of using large language models for simulating human opinions.<n>We demonstrate the usefulness of the proposed quality control tests in the context of AI-assisted content moderation.<n>We conclude by discussing implications of these failure modes and recommend how organizations can utilize our proposed tests for prompt engineering.
- Score: 5.4260854377259315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The array of emergent capabilities of large language models (LLMs) has sparked interest in assessing their ability to simulate human opinions in a variety of contexts, potentially serving as surrogates for human subjects in opinion surveys. However, previous evaluations of this capability have depended heavily on costly, domain-specific human survey data, and mixed empirical results about LLM effectiveness create uncertainty for managers about whether investing in this technology is justified in early-stage research. To address these challenges, we introduce a series of quality checks to support early-stage deliberation about the viability of using LLMs for simulating human opinions. These checks emphasize logical constraints, model stability, and alignment with stakeholder expectations of model outputs, thereby reducing dependence on human-generated data in the initial stages of evaluation. We demonstrate the usefulness of the proposed quality control tests in the context of AI-assisted content moderation, an application that both advocates and critics of LLMs' capabilities to simulate human opinion see as a desirable potential use case. None of the tested models passed all quality control checks, revealing several failure modes. We conclude by discussing implications of these failure modes and recommend how organizations can utilize our proposed tests for prompt engineering and in their risk management practices when considering the use of LLMs for opinion simulation. We make our crowdsourced dataset of claims with human and LLM annotations publicly available for future research.
Related papers
- Evaluating Local and Cloud-Based Large Language Models for Simulating Consumer Choices in Energy Stated Preference Surveys [4.672157041593765]
This study investigates the ability of large language models to simulate consumer choices in energy-related SP surveys.
Results indicate that while LLMs achieve an average accuracy of up to 48%, their performance remains insufficient for practical application.
Findings suggest that previous SP choices are the most effective input factor, while longer prompts with varied factor formats may reduce accuracy.
arXiv Detail & Related papers (2025-03-07T10:37:31Z) - Human Preferences in Large Language Model Latent Space: A Technical Analysis on the Reliability of Synthetic Data in Voting Outcome Prediction [5.774786149181393]
We analyze how demographic attributes and prompt variations influence latent opinion mappings in large language models (LLMs)<n>We find that LLM-generated data fails to replicate the variance observed in real-world human responses.<n>In the political space, persona-to-party mappings exhibit limited differentiation, resulting in synthetic data that lacks the nuanced distribution of opinions found in survey data.
arXiv Detail & Related papers (2025-02-22T16:25:33Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.
LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.
Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - Potential and Perils of Large Language Models as Judges of Unstructured Textual Data [0.631976908971572]
This research investigates the effectiveness of LLM-as-judge models to evaluate the thematic alignment of summaries generated by other LLMs.<n>Our findings reveal that while LLM-as-judge offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances.
arXiv Detail & Related papers (2025-01-14T14:49:14Z) - LLM-based relevance assessment still can't replace human relevance assessment [12.829823535454505]
Recent studies suggest that large language models (LLMs) for relevance assessment in information retrieval provide comparable evaluations to human judgments.<n>Upadhyay et al. claim that LLM-based relevance assessments can fully replace traditional human relevance assessments in TREC-style evaluations.<n>This paper critically examines this claim, highlighting practical and theoretical limitations that undermine the validity of this conclusion.
arXiv Detail & Related papers (2024-12-22T20:45:15Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments.<n>We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data.<n>We evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations.
arXiv Detail & Related papers (2024-06-26T14:56:13Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.<n>This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)<n>We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - Understanding Social Reasoning in Language Models with Language Models [34.068368860882586]
We present a novel framework for generating evaluations with Large Language Models (LLMs) by populating causal templates.
We create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations.
We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations.
arXiv Detail & Related papers (2023-06-21T16:42:15Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.