MotionDreamer: One-to-Many Motion Synthesis with Localized Generative Masked Transformer
- URL: http://arxiv.org/abs/2504.08959v1
- Date: Fri, 11 Apr 2025 20:27:22 GMT
- Title: MotionDreamer: One-to-Many Motion Synthesis with Localized Generative Masked Transformer
- Authors: Yilin Wang, Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Xinxin Zuo, Juwei Lu, Hai Jiang, Li Cheng,
- Abstract summary: We present MotionDreamer, a localized masked modeling paradigm designed to learn internal motion patterns from a given motion.<n> MotionDreamer constructs a robust and informative codebook for local motion patterns using a novel distribution regularization method.<n>As demonstrated through comprehensive experiments, MotionDreamer outperforms the state-of-the-art methods that are typically GAN or Diffusion-based in both faithfulness and diversity.
- Score: 36.43680216948212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative masked transformers have demonstrated remarkable success across various content generation tasks, primarily due to their ability to effectively model large-scale dataset distributions with high consistency. However, in the animation domain, large datasets are not always available. Applying generative masked modeling to generate diverse instances from a single MoCap reference may lead to overfitting, a challenge that remains unexplored. In this work, we present MotionDreamer, a localized masked modeling paradigm designed to learn internal motion patterns from a given motion with arbitrary topology and duration. By embedding the given motion into quantized tokens with a novel distribution regularization method, MotionDreamer constructs a robust and informative codebook for local motion patterns. Moreover, a sliding window local attention is introduced in our masked transformer, enabling the generation of natural yet diverse animations that closely resemble the reference motion patterns. As demonstrated through comprehensive experiments, MotionDreamer outperforms the state-of-the-art methods that are typically GAN or Diffusion-based in both faithfulness and diversity. Thanks to the consistency and robustness of the quantization-based approach, MotionDreamer can also effectively perform downstream tasks such as temporal motion editing, \textcolor{update}{crowd animation}, and beat-aligned dance generation, all using a single reference motion. Visit our project page: https://motiondreamer.github.io/
Related papers
- MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models [3.2311303453753033]
We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models.<n>Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics.<n>Our experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.
arXiv Detail & Related papers (2024-12-06T18:59:12Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.<n>We translate high-level user requests into detailed, semi-dense motion prompts.<n>We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics [67.97235923372035]
We present Puppet-Master, an interactive video generative model that can serve as a motion prior for part-level dynamics.
At test time, given a single image and a sparse set of motion trajectories, Puppet-Master can synthesize a video depicting realistic part-level motion faithful to the given drag interactions.
arXiv Detail & Related papers (2024-08-08T17:59:38Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
We introduce Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs.
SMCD incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions.
Our design significantly enhances video quality, motion precision, and semantic coherence.
arXiv Detail & Related papers (2024-03-15T10:36:24Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMix is a weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences.
Our framework consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks.
arXiv Detail & Related papers (2024-01-20T04:58:06Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - Motion In-Betweening with Phase Manifolds [29.673541655825332]
This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder.
Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights.
arXiv Detail & Related papers (2023-08-24T12:56:39Z) - Single Motion Diffusion [33.81898532874481]
We present SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them.
SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation.
Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency.
arXiv Detail & Related papers (2023-02-12T13:02:19Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.