Scaling Large Motion Models with Million-Level Human Motions
- URL: http://arxiv.org/abs/2410.03311v3
- Date: Fri, 30 May 2025 12:53:31 GMT
- Title: Scaling Large Motion Models with Million-Level Human Motions
- Authors: Ye Wang, Sipeng Zheng, Bin Cao, Qianshan Wei, Weishuai Zeng, Qin Jin, Zongqing Lu,
- Abstract summary: We present MotionLib, the first million-level dataset for motion generation.<n>We train a large motion model named projname, demonstrating robust performance across a wide range of human activities.
- Score: 67.40066387326141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the recent success of LLMs, the field of human motion understanding has increasingly shifted toward developing large motion models. Despite some progress, current efforts remain far from achieving truly generalist models, primarily due to the lack of massive high-quality data. To address this gap, we present MotionLib, the first million-level dataset for motion generation, which is at least 15$\times$ larger than existing counterparts and enriched with hierarchical text descriptions. Using MotionLib, we train a large motion model named \projname, demonstrating robust performance across a wide range of human activities, including unseen ones. Through systematic investigation, for the first time, we highlight the importance of scaling both data and model size for advancing motion generation, along with key insights to achieve this goal. To better integrate the motion modality, we propose Motionbook, an innovative motion encoding approach including (1) a compact yet lossless feature to represent motions; (2) a novel 2D lookup-free motion tokenizer that preserves fine-grained motion details while expanding codebook capacity, significantly enhancing the representational power of motion tokens. We believe this work lays the groundwork for developing more versatile and powerful motion generation models in the future. For further details, visit https://beingbeyond.github.io/Being-M0/.
Related papers
- GENMO: A GENeralist Model for Human MOtion [64.16188966024542]
We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework.<n>Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals.<n>Our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control.
arXiv Detail & Related papers (2025-05-02T17:59:55Z) - RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism [73.38167494118746]
We propose a framework to improve the realism of motion in generated videos.
We advocate for the incorporation of a retrieval mechanism during the generation phase.
Our pipeline is designed to apply to any text-to-video diffusion model.
arXiv Detail & Related papers (2025-04-09T08:14:05Z) - PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model [23.768571323272152]
PartRM is a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object.
We introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states.
Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics.
arXiv Detail & Related papers (2025-03-25T17:59:58Z) - A Self-supervised Motion Representation for Portrait Video Generation [19.56640370303683]
We propose Semantic Latent Motion (SeMo), a compact and expressive motion representation.<n>Our approach achieves both high-quality visual results and efficient inference.<n>Our approach surpasses state-of-the-art models with an 81% win rate in realism.
arXiv Detail & Related papers (2025-03-13T06:43:21Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.<n>We translate high-level user requests into detailed, semi-dense motion prompts.<n>We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - IMUDiffusion: A Diffusion Model for Multivariate Time Series Synthetisation for Inertial Motion Capturing Systems [0.0]
We propose IMUDiffusion, a probabilistic diffusion model specifically designed for time series generation.
Our approach enables the generation of high-quality time series sequences which accurately capture the dynamics of human activities.
In some cases, we are able to improve the macro F1-score by almost 30%.
arXiv Detail & Related papers (2024-11-05T09:53:52Z) - MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations [85.85596165472663]
We build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions.
Our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding.
arXiv Detail & Related papers (2024-10-17T17:31:24Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) is a motion-centric, multi-modal framework that unifies mainstream motion generation tasks into a generalist model.
LMM tackles these challenges from three principled aspects.
arXiv Detail & Related papers (2024-04-01T17:55:11Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMix is a weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences.
Our framework consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks.
arXiv Detail & Related papers (2024-01-20T04:58:06Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Make-An-Animation: Large-Scale Text-conditional 3D Human Motion
Generation [47.272177594990104]
We introduce Make-An-Animation, a text-conditioned human motion generation model.
It learns more diverse poses and prompts from large-scale image-text datasets.
It reaches state-of-the-art performance on text-to-motion generation.
arXiv Detail & Related papers (2023-05-16T17:58:43Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoR is a 3D Human Motion Model for Robust Estimation of temporal pose and shape.
We introduce a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence.
We demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset.
arXiv Detail & Related papers (2021-05-10T21:04:55Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) learns to encode motion information.
MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
We demonstrate that MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
arXiv Detail & Related papers (2021-04-01T03:55:50Z) - Recognition and Synthesis of Object Transport Motion [0.0]
This project illustrates how deep convolutional networks can be used, alongside specialized data augmentation techniques, on a small motion capture dataset.
The project shows how these same augmentation techniques can be scaled up for use in the more complex task of motion synthesis.
By exploring recent developments in the concept of Generative Adversarial Models (GANs), specifically the Wasserstein GAN, this project outlines a model that is able to successfully generate lifelike object transportation motions.
arXiv Detail & Related papers (2020-09-27T22:13:26Z) - Dynamic Future Net: Diversified Human Motion Generation [31.987602940970888]
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality.
We present Dynamic Future Net, a new deep learning model where we explicitly focuses on the intrinsic motionity of human motion dynamics.
Our model can generate a large number of high-quality motions with arbitrary duration, and visuallyincing variations in both space and time.
arXiv Detail & Related papers (2020-08-25T02:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.