BlockGaussian: Efficient Large-Scale Scene Novel View Synthesis via Adaptive Block-Based Gaussian Splatting
- URL: http://arxiv.org/abs/2504.09048v2
- Date: Tue, 15 Apr 2025 08:25:21 GMT
- Title: BlockGaussian: Efficient Large-Scale Scene Novel View Synthesis via Adaptive Block-Based Gaussian Splatting
- Authors: Yongchang Wu, Zipeng Qi, Zhenwei Shi, Zhengxia Zou,
- Abstract summary: BlockGaussian is a novel framework incorporating a content-aware scene partition strategy and visibility-aware block optimization.<n>Our approach achieves state-of-the-art performance in both reconstruction efficiency and rendering quality, with a 5x speedup in optimization and an average PSNR improvement of 1.21 dB on multiple benchmarks.<n> Notably, BlockGaussian significantly reduces computational requirements, enabling large-scale scene reconstruction on a single 24GB VRAM device.
- Score: 23.190361456894816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advancements in 3D Gaussian Splatting (3DGS) have demonstrated remarkable potential in novel view synthesis tasks. The divide-and-conquer paradigm has enabled large-scale scene reconstruction, but significant challenges remain in scene partitioning, optimization, and merging processes. This paper introduces BlockGaussian, a novel framework incorporating a content-aware scene partition strategy and visibility-aware block optimization to achieve efficient and high-quality large-scale scene reconstruction. Specifically, our approach considers the content-complexity variation across different regions and balances computational load during scene partitioning, enabling efficient scene reconstruction. To tackle the supervision mismatch issue during independent block optimization, we introduce auxiliary points during individual block optimization to align the ground-truth supervision, which enhances the reconstruction quality. Furthermore, we propose a pseudo-view geometry constraint that effectively mitigates rendering degradation caused by airspace floaters during block merging. Extensive experiments on large-scale scenes demonstrate that our approach achieves state-of-the-art performance in both reconstruction efficiency and rendering quality, with a 5x speedup in optimization and an average PSNR improvement of 1.21 dB on multiple benchmarks. Notably, BlockGaussian significantly reduces computational requirements, enabling large-scale scene reconstruction on a single 24GB VRAM device. The project page is available at https://github.com/SunshineWYC/BlockGaussian
Related papers
- HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction [25.968291836648124]
3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios.<n>We propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization.<n>Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints.
arXiv Detail & Related papers (2025-06-17T06:35:38Z) - QuickSplat: Fast 3D Surface Reconstruction via Learned Gaussian Initialization [69.50126552763157]
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more.<n>Existing approaches based on rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model textureless regions.<n>We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes.
arXiv Detail & Related papers (2025-05-08T18:43:26Z) - HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction [13.214165748862815]
We present HUG, a novel approach to address inefficiencies in handling large-scale urban environments.
We employ an enhanced block-based reconstruction pipeline focusing on improving reconstruction quality within each block.
We achieve high-quality scene rendering at a low computational cost.
arXiv Detail & Related papers (2025-04-23T10:40:40Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping [6.160345720038265]
We introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and kernel optimization.<n>Experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction.
arXiv Detail & Related papers (2025-01-03T07:40:16Z) - DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction.
Few-shot methods often struggle with poor reconstruction quality in vast environments.
This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes.
arXiv Detail & Related papers (2024-11-19T07:51:44Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.<n>We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.<n>Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.