HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction
- URL: http://arxiv.org/abs/2506.14229v1
- Date: Tue, 17 Jun 2025 06:35:38 GMT
- Title: HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction
- Authors: Changbai Li, Haodong Zhu, Hanlin Chen, Juan Zhang, Tongfei Chen, Shuo Yang, Shuwei Shao, Wenhao Dong, Baochang Zhang,
- Abstract summary: 3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios.<n>We propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization.<n>Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints.
- Score: 25.968291836648124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios. To address this, we propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization. First, we generate a global, coarse Gaussian representation from low-resolution data. Then, we partition the scene into multiple blocks, refining each block with high-resolution data. The partitioning involves two steps: Gaussian partitioning, where irregular scenes are normalized into a bounded cubic space with a uniform grid for task distribution, and training data partitioning, where only relevant observations are retained for each block. By guiding block refinement with the coarse Gaussian prior, we ensure seamless Gaussian fusion across adjacent blocks. To reduce computational demands, we introduce Importance-Driven Gaussian Pruning (IDGP), which computes importance scores for each Gaussian and removes those with minimal contribution, speeding up convergence and reducing memory usage. Additionally, we incorporate normal priors from a pretrained model to enhance surface reconstruction quality. Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints. Extensive experiments on three benchmarks show that HRGS achieves state-of-the-art performance in high-resolution novel view synthesis (NVS) and surface reconstruction tasks.
Related papers
- LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering [68.93333348474988]
We present a novel level-of-detail (LOD) method for 3D Gaussian Splatting on memory-constrained devices.<n>Our approach iteratively selects optimal subsets of Gaussians based on camera distance.<n>Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets.
arXiv Detail & Related papers (2025-05-29T06:50:57Z) - Steepest Descent Density Control for Compact 3D Gaussian Splatting [72.54055499344052]
3D Gaussian Splatting (3DGS) has emerged as a powerful real-time, high-resolution novel view.<n>We propose a theoretical framework that demystifies and improves density control in 3DGS.<n>We introduce SteepGS, incorporating steepest density control, a principled strategy that minimizes loss while maintaining a compact point cloud.
arXiv Detail & Related papers (2025-05-08T18:41:38Z) - Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting [0.3749861135832072]
This work implements an adaptive densification strategy that dynamically refines regions with high image gradients.<n>It results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency.
arXiv Detail & Related papers (2025-04-08T07:15:58Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.<n>Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.<n>We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping [6.160345720038265]
We introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and kernel optimization.<n>Experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction.
arXiv Detail & Related papers (2025-01-03T07:40:16Z) - TSGaussian: Semantic and Depth-Guided Target-Specific Gaussian Splatting from Sparse Views [18.050257821756148]
TSGaussian is a novel framework that combines semantic constraints with depth priors to avoid geometry degradation in novel view synthesis tasks.<n>Our approach prioritizes computational resources on designated targets while minimizing background allocation.<n>Extensive experiments demonstrate that TSGaussian outperforms state-of-the-art methods on three standard datasets.
arXiv Detail & Related papers (2024-12-13T11:26:38Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.<n>We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.<n>Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) technique couples 3D primitives with differentiable Gaussianization to achieve high-quality novel view results.
However, 3D-GS frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images.
We present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision.
Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting.
arXiv Detail & Related papers (2024-04-16T11:44:12Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.<n>The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.<n>Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.