論文の概要: A Visual Self-attention Mechanism Facial Expression Recognition Network beyond Convnext
- arxiv url: http://arxiv.org/abs/2504.09077v1
- Date: Sat, 12 Apr 2025 04:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:26.210447
- Title: A Visual Self-attention Mechanism Facial Expression Recognition Network beyond Convnext
- Title(参考訳): Convnextを超える顔表情認識ネットワークの視覚的自己認識機構
- Authors: Bingyu Nan, Feng Liu, Xuezhong Qian, Wei Song,
- Abstract要約: 本稿では,truncated ConvNeXtアプローチに基づく視覚表情信号処理ネットワークを提案する(Conv-cut)。
ネットワークは,特徴抽出器としてトラッピングされたConvNeXt-Baseを使用し,詳細特徴抽出のための詳細抽出ブロックを設計した。
提案手法を評価するために,RAF-DBおよびFERPlusデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 5.651484411686618
- License:
- Abstract: Facial expression recognition is an important research direction in the field of artificial intelligence. Although new breakthroughs have been made in recent years, the uneven distribution of datasets and the similarity between different categories of facial expressions, as well as the differences within the same category among different subjects, remain challenges. This paper proposes a visual facial expression signal feature processing network based on truncated ConvNeXt approach(Conv-cut), to improve the accuracy of FER under challenging conditions. The network uses a truncated ConvNeXt-Base as the feature extractor, and then we designed a Detail Extraction Block to extract detailed features, and introduced a Self-Attention mechanism to enable the network to learn the extracted features more effectively. To evaluate the proposed Conv-cut approach, we conducted experiments on the RAF-DB and FERPlus datasets, and the results show that our model has achieved state-of-the-art performance. Our code could be accessed at Github.
- Abstract(参考訳): 表情認識は人工知能の分野で重要な研究方向である。
近年では新たなブレークスルーがおこなわれているが、データセットの不均一な分布と、表情の異なるカテゴリ間の類似性、および異なる被験者間の同じカテゴリ間の差異は依然として課題である。
本稿では,難解な条件下でのFERの精度を向上させるために,truncated ConvNeXtアプローチ(Conv-cut)に基づく視覚表情信号特徴処理ネットワークを提案する。
ネットワークは,特徴抽出器として切り詰められたConvNeXt-Baseを使用し,詳細な特徴を抽出するための詳細抽出ブロックを設計し,抽出した特徴をより効果的に学習するための自己認識機構を導入した。
提案手法を評価するために,RAF-DBおよびFERPlusデータセットの実験を行った。
私たちのコードはGithubでアクセスできます。
関連論文リスト
- Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - More comprehensive facial inversion for more effective expression
recognition [8.102564078640274]
IFER(Inversion FER)と呼ばれるFERタスクの画像反転機構に基づく新しい生成手法を提案する。
ASITは、分布アライメント損失に制約された、ソースと生成された画像間のセマンティック特徴のコサイン類似度を測定する画像反転判別器を備えている。
FFHQやCelebA-HQなどの顔データセット上でASITを広範囲に評価し,現状の顔インバージョン性能を実現する方法を示した。
論文 参考訳(メタデータ) (2022-11-24T12:31:46Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - TransFA: Transformer-based Representation for Face Attribute Evaluation [87.09529826340304]
我々はtextbfTransFA を用いたtextbfattribute 評価のための新しい textbf Transformer 表現を提案する。
提案するTransFAは,最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-12T10:58:06Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
本稿では,視覚における表情認識のためのマルチタスク学習フレームワークを提案する。
MTL設定において、離散認識と連続認識の両方のために共有特徴表現が学習される。
実験の結果,本手法は離散FER上での最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-07T10:20:05Z) - Facial expression and attributes recognition based on multi-task
learning of lightweight neural networks [9.162936410696409]
顔の識別と顔の属性の分類のための軽量畳み込みニューラルネットワークのマルチタスクトレーニングを検討する。
顔の表情を予測するためには,これらのネットワークを微調整する必要がある。
MobileNet、EfficientNet、RexNetアーキテクチャに基づくいくつかのモデルが提示される。
論文 参考訳(メタデータ) (2021-03-31T14:21:04Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition [5.735035463793008]
深層多面的パッチアグリゲーションネットワークに基づく顔表情認識(FER)のアプローチを提案する。
ディープ機能は、ディープサブネットワークを使用して顔のパッチから学習され、表現分類のために1つのディープアーキテクチャに集約される。
論文 参考訳(メタデータ) (2020-02-20T17:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。