RICCARDO: Radar Hit Prediction and Convolution for Camera-Radar 3D Object Detection
- URL: http://arxiv.org/abs/2504.09086v1
- Date: Sat, 12 Apr 2025 05:37:42 GMT
- Title: RICCARDO: Radar Hit Prediction and Convolution for Camera-Radar 3D Object Detection
- Authors: Yunfei Long, Abhinav Kumar, Xiaoming Liu, Daniel Morris,
- Abstract summary: We build a model to predict radar hit distributions conditioned on object properties obtained from a monocular detector.<n>We use the predicted distribution as a kernel to match actual measured radar points in the neighborhood of the monocular detections.<n>Our method achieves the state-of-the-art radar-camera detection performance on nuScenes.
- Score: 16.872776956141195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar hits reflect from points on both the boundary and internal to object outlines. This results in a complex distribution of radar hits that depends on factors including object category, size, and orientation. Current radar-camera fusion methods implicitly account for this with a black-box neural network. In this paper, we explicitly utilize a radar hit distribution model to assist fusion. First, we build a model to predict radar hit distributions conditioned on object properties obtained from a monocular detector. Second, we use the predicted distribution as a kernel to match actual measured radar points in the neighborhood of the monocular detections, generating matching scores at nearby positions. Finally, a fusion stage combines context with the kernel detector to refine the matching scores. Our method achieves the state-of-the-art radar-camera detection performance on nuScenes. Our source code is available at https://github.com/longyunf/riccardo.
Related papers
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.<n>Radar suffers from noise and positional ambiguity.<n>We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - RCM-Fusion: Radar-Camera Multi-Level Fusion for 3D Object Detection [15.686167262542297]
We propose Radar-Camera Multi-level fusion (RCM-Fusion), which attempts to fuse both modalities at both feature and instance levels.
For feature-level fusion, we propose a Radar Guided BEV which transforms camera features into precise BEV representations.
For instance-level fusion, we propose a Radar Grid Point Refinement module that reduces localization error.
arXiv Detail & Related papers (2023-07-17T07:22:25Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
Multi-view radar-camera fused 3D object detection provides a farther detection range and more helpful features for autonomous driving.
Current radar-camera fusion methods deliver kinds of designs to fuse radar information with camera data.
We present MVFusion, a novel Multi-View radar-camera Fusion method to achieve semantic-aligned radar features.
arXiv Detail & Related papers (2023-02-21T08:25:50Z) - RADDet: Range-Azimuth-Doppler based Radar Object Detection for Dynamic
Road Users [6.61211659120882]
We collect a novel radar dataset that contains radar data in the form of Range-Azimuth-Doppler tensors.
To build the dataset, we propose an instance-wise auto-annotation method.
A novel Range-Azimuth-Doppler based multi-class object detection deep learning model is proposed.
arXiv Detail & Related papers (2021-05-02T00:25:11Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - Radar-Camera Sensor Fusion for Joint Object Detection and Distance
Estimation in Autonomous Vehicles [8.797434238081372]
We present a novel radar-camera sensor fusion framework for accurate object detection and distance estimation in autonomous driving scenarios.
The proposed architecture uses a middle-fusion approach to fuse the radar point clouds and RGB images.
Experiments on the challenging nuScenes dataset show our method outperforms other existing radar-camera fusion methods in the 2D object detection task.
arXiv Detail & Related papers (2020-09-17T17:23:40Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.