High dimensional online calibration in polynomial time
- URL: http://arxiv.org/abs/2504.09096v1
- Date: Sat, 12 Apr 2025 06:28:05 GMT
- Title: High dimensional online calibration in polynomial time
- Authors: Binghui Peng,
- Abstract summary: In online (sequential) calibration, a forecaster predicts probability distributions over a finite outcome space $[d]$ over a sequence of $T$ days.<n>Best known algorithms require $exp(d)$ days to achieve non-trivial calibration.<n>We present the firstally calibrated strategy that guarantees non-trivial algorithm calibration after a number of rounds.
- Score: 17.45683822446751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In online (sequential) calibration, a forecaster predicts probability distributions over a finite outcome space $[d]$ over a sequence of $T$ days, with the goal of being calibrated. While asymptotically calibrated strategies are known to exist, they suffer from the curse of dimensionality: the best known algorithms require $\exp(d)$ days to achieve non-trivial calibration. In this work, we present the first asymptotically calibrated strategy that guarantees non-trivial calibration after a polynomial number of rounds. Specifically, for any desired accuracy $\epsilon > 0$, our forecaster becomes $\epsilon$-calibrated after $T = d^{O(1/\epsilon^2)}$ days. We complement this result with a lower bound, proving that at least $T = d^{\Omega(\log(1/\epsilon))}$ rounds are necessary to achieve $\epsilon$-calibration. Our results resolve the open questions posed by [Abernethy-Mannor'11, Hazan-Kakade'12]. Our algorithm is inspired by recent breakthroughs in swap regret minimization [Peng-Rubinstein'24, Dagan et al.'24]. Despite its strong theoretical guarantees, the approach is remarkably simple and intuitive: it randomly selects among a set of sub-forecasters, each of which predicts the empirical outcome frequency over recent time windows.
Related papers
- Robust Sparse Regression with Non-Isotropic Designs [4.964650614497048]
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries.
We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries.
arXiv Detail & Related papers (2024-10-31T13:51:59Z) - Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians [7.04316974339151]
We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set.
We develop tools that may be of independent interest, including a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples.
arXiv Detail & Related papers (2024-10-02T15:21:07Z) - Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery [45.601316850669406]
We present efficient algorithms for policy evaluation, best policy identification and regret minimization.
For policy evaluation and best policy identification, we show that our algorithms are nearly minimax optimal.
All the proposed algorithms consist of two phases: they first leverage spectral methods to estimate the left and right singular subspaces of the low-rank reward matrix.
arXiv Detail & Related papers (2024-02-24T06:36:08Z) - Testing Calibration in Nearly-Linear Time [14.099477870728595]
We focus on the algorithmic study of calibration through the lens of property testing.
We make the simple observation that the empirical smooth calibration linear program can be reformulated as an instance of minimum-cost flow on a highly-structured graph.
We present experiments showing the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale efficiently to accommodate large sample sizes.
arXiv Detail & Related papers (2024-02-20T17:53:24Z) - Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression [44.13655983242414]
We design the first sample near- and almost linear-time algorithms with optimal error guarantees.
For robust linear regression, we give the first algorithm with sample complexity $n = tildeO(d/epsilon2)$ and almost linear runtime that approximates the target regressor within $ell$- $O(epsilon)$.
This is the first sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature.
arXiv Detail & Related papers (2023-12-04T00:31:16Z) - Quantum speedups for linear programming via interior point methods [1.8434042562191815]
We describe a quantum algorithm for solving a linear program with $n$ inequality constraints on $d$ variables.
Our algorithm speeds up the Newton step in the state-of-the-art interior point method of Lee and Sidford.
arXiv Detail & Related papers (2023-11-06T16:00:07Z) - Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise [54.34628844260993]
Differentially private computation often begins with a bound on some $d$-dimensional statistic's sensitivity.
For pure differential privacy, the $K$-norm mechanism can improve on this approach using a norm tailored to the statistic's sensitivity space.
This paper solves both problems for the simple statistics of sum, count, and vote.
arXiv Detail & Related papers (2023-09-27T17:09:36Z) - Streaming Algorithms for Learning with Experts: Deterministic Versus
Robust [62.98860182111096]
In the online learning with experts problem, an algorithm must make a prediction about an outcome on each of $T$ days (or times)
The goal is to make a prediction with the minimum cost, specifically compared to the best expert in the set.
We show a space lower bound of $widetildeOmegaleft(fracnMRTright)$ for any deterministic algorithm that achieves regret $R$ when the best expert makes $M$ mistakes.
arXiv Detail & Related papers (2023-03-03T04:39:53Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Variance-Aware Sparse Linear Bandits [64.70681598741417]
Worst-case minimax regret for sparse linear bandits is $widetildeThetaleft(sqrtdTright)$.
In the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve an $widetildemathcal O(1)$ regret.
We develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits.
arXiv Detail & Related papers (2022-05-26T15:55:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.