論文の概要: Self-Supervised Autoencoder Network for Robust Heart Rate Extraction from Noisy Photoplethysmogram: Applying Blind Source Separation to Biosignal Analysis
- arxiv url: http://arxiv.org/abs/2504.09132v1
- Date: Sat, 12 Apr 2025 08:47:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:22.728810
- Title: Self-Supervised Autoencoder Network for Robust Heart Rate Extraction from Noisy Photoplethysmogram: Applying Blind Source Separation to Biosignal Analysis
- Title(参考訳): ノイズ光胸腺X線写真からのロバスト心拍数抽出のための自己監督オートエンコーダネットワーク:ブラインド音源分離と生体信号解析への応用
- Authors: Matthew B. Webster, Dongheon Lee, Joonnyong Lee,
- Abstract要約: ブラインドソース分離(Blind Source separation、BSS)は、混合物から基礎となるソース信号を抽出することを目的としている。
本稿では,光プラチスモグラム(PSG)からソース信号を分離する自己教師型マルチエンコーダオートエンコーダ(MEAE)を提案する。
MEAEは、事前処理やデータ選択なしに、大きなオープンポリソノグラフィーデータベースからのPSG信号に基づいて訓練される。
- 参考スコア(独自算出の注目度): 2.069879636268966
- License:
- Abstract: Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of BSS in biosignal analysis.
- Abstract(参考訳): 生体信号は、特定の生理的事象を測定する混合物と見なすことができ、ブラインドソース分離(BSS)は、混合物から基盤となるソース信号を抽出することを目的としている。
本稿では,光胸腺X線写真(PPG)から心拍関連ソース信号を分離する自己教師型マルチエンコーダオートエンコーダ(MEAE)を提案する。
MEAEは、事前処理やデータ選択なしに、大きなオープンポリソノグラフィーデータベースからのPSG信号に基づいて訓練される。
トレーニングされたネットワークは、9人の被験者の日常活動中に収集されたノイズの多いPSGデータセットに適用される。
抽出された心拍関連ソース信号は、元のPGGと比較してHR検出を著しく改善する。
プリプロセッシングの欠如と, 提案手法の自己監督特性は, 強い性能と相まって, 生体信号解析におけるBSSの可能性を強調した。
関連論文リスト
- PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
光胸腺造影法(英: Photoplethysmography, PPG)は、光学的手法を用いて心臓生理学を計測する費用効率の高い非侵襲的手法である。
本稿では,PPG信号を対応するECG波形に変換するために,主観非依存の注目に基づく深部状態空間モデル(ADSSM)を提案する。
論文 参考訳(メタデータ) (2023-09-27T03:07:46Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - A Self-Supervised Algorithm for Denoising Photoplethysmography Signals
for Heart Rate Estimation from Wearables [21.086951625740824]
我々は,PPG信号の清浄な部分を保ちながら,信号の劣化部分を再構成するPPG信号を復調するアルゴリズムを開発した。
我々の新しいフレームワークは自己教師型トレーニングに依存しており、クリーンなPSG信号の大規模なデータベースを活用してデノナイズドオートエンコーダを訓練する。
論文 参考訳(メタデータ) (2023-07-07T06:21:43Z) - WPPG Net: A Non-contact Video Based Heart Rate Extraction Network
Framework with Compatible Training Capability [21.33542693986985]
顔の皮膚には、リモートフォトプレシー(r)信号と呼ばれる微妙な色の変化があり、そこから被験者の心拍数を抽出できる。
近年,r信号抽出に関する多くの深層学習手法と関連するデータセットが提案されている。
しかしながら,BVP信号などのラベル波は,我々の体内を流れる時間と他の要因により,実際のr信号に不確実な遅延がある。
本稿では、r信号とラベル波のリズムと周期性に関する共通特性を解析することにより、これらのネットワークを包み、トレーニング時に効率を保ち続けるためのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-07-04T19:52:30Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal [1.52292571922932]
複数のストレスレベルを持つデータセットを導入し、新しいディープラーニングアプローチを用いてこれらのレベルを分類する。
信号画像は時間周波数領域と周波数領域に変換してマルチモーダル・マルチドメイン化した。
提案された融合フレームワークとECG信号による画像変換により、平均精度は85.45%に達する。
論文 参考訳(メタデータ) (2020-08-12T18:08:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。