論文の概要: PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling
- arxiv url: http://arxiv.org/abs/2309.15375v4
- Date: Wed, 12 Jun 2024 16:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 23:33:02.700231
- Title: PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling
- Title(参考訳): PPG-ECG信号変換による心房細動連続検出
- Authors: Khuong Vo, Mostafa El-Khamy, Yoojin Choi,
- Abstract要約: 光胸腺造影法(英: Photoplethysmography, PPG)は、光学的手法を用いて心臓生理学を計測する費用効率の高い非侵襲的手法である。
本稿では,PPG信号を対応するECG波形に変換するために,主観非依存の注目に基づく深部状態空間モデル(ADSSM)を提案する。
- 参考スコア(独自算出の注目度): 11.617950008187366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photoplethysmography (PPG) is a cost-effective and non-invasive technique that utilizes optical methods to measure cardiac physiology. PPG has become increasingly popular in health monitoring and is used in various commercial and clinical wearable devices. Compared to electrocardiography (ECG), PPG does not provide substantial clinical diagnostic value, despite the strong correlation between the two. Here, we propose a subject-independent attention-based deep state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms. The model is not only robust to noise but also data-efficient by incorporating probabilistic prior knowledge. To evaluate our approach, 55 subjects' data from the MIMIC-III database were used in their original form, and then modified with noise, mimicking real-world scenarios. Our approach was proven effective as evidenced by the PR-AUC of 0.986 achieved when inputting the translated ECG signals into an existing atrial fibrillation (AFib) detector. ADSSM enables the integration of ECG's extensive knowledge base and PPG's continuous measurement for early diagnosis of cardiovascular disease.
- Abstract(参考訳): 光胸腺撮影(英: Photoplethysmography、PPG)は、光学的手法を用いて心臓生理学を計測する費用効率の高い非侵襲的手法である。
PPGは、健康モニタリングでますます人気となり、様々な商用および臨床ウェアラブルデバイスで使用されている。
心電図 (ECG) と比較すると, PPGは両者の相関が強いにもかかわらず, 臨床診断に有意な価値を与えていない。
本稿では,PPG信号を対応するECG波形に変換するために,主観非依存の注目に基づく深部状態空間モデル(ADSSM)を提案する。
このモデルはノイズに対して堅牢であるだけでなく、確率論的事前知識を取り入れることでデータ効率も向上する。
提案手法を評価するために,MIMIC-IIIデータベースから55名の被験者のデータを元の形式で使用し,実世界のシナリオを模倣したノイズで修正した。
既存の心房細動検出器(AFib)に心電図信号を入力する際に, 0.986のPR-AUCが実現した。
ADSSMは、心血管疾患の早期診断のためのECGの広範な知識基盤とPSGの継続的な測定の統合を可能にする。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models [16.03166435894744]
光胸腺造影(英: Photoplethysmography, PPG)は、血液の体積変動を測定する光学的信号である。
ECGはより包括的な情報を提供し、心臓の状態をより正確に検出することができる。
本稿では, PPG-2-ECG変換に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-19T14:30:57Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
単誘導心電図データに基づいて心房細動を識別するための視覚変換器アプローチを開発した。
また、残差ネットワーク(ResNet)アプローチも、視覚変換器アプローチと比較するために開発されている。
論文 参考訳(メタデータ) (2024-02-12T11:04:08Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
心臓血管疾患(CVD)は死因の上位1つとなり、これらの死亡の4分の3は低所得層で発生している。
心電図 (ECG) は, ユーザ参加の必要性から, 連続心臓モニタリングには有効ではない。
フォトプレチスモグラフィーは容易に収集できるが、精度の制限により臨床応用は制限される。
論文 参考訳(メタデータ) (2022-04-25T17:10:13Z) - Runtime Monitoring and Statistical Approaches for Correlation Analysis
of ECG and PPG [3.9526036279093937]
ECGとPSGは同じ現象に「異なる窓」を与える信号である。
ECG と PPG は別々に使用されるが、異なる ECG と PPG の事象の正確な補正についての研究は行われていない。
本稿では,ECG と PPG 信号の鍵となる関係を正式に確立するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-20T08:01:45Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
心臓疾患の早期診断は, 肺高血圧, 心臓リズム障害, 血栓, 心不全, 突然の心停止などの合併症を予防するために重要である。
このような疾患を識別するために、心電図(PCG)および心電図(ECG)波形は重要な情報を伝達する。
本稿では,PCGとECGを同時取得したPhystoNet Challenge 2016データセットのサブセットを用いて,この仮説を評価する。
我々の新しいDual-Convolutional Neural Networkベースのアプローチは、トランスファーラーニングを使用して、一般公開されているPCGとECGの同時データ量に制限のある問題に対処する。
論文 参考訳(メタデータ) (2021-02-02T19:51:12Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。