論文の概要: Accurate Diagnosis of Respiratory Viruses Using an Explainable Machine Learning with Mid-Infrared Biomolecular Fingerprinting of Nasopharyngeal Secretions
- arxiv url: http://arxiv.org/abs/2504.09211v1
- Date: Sat, 12 Apr 2025 13:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:20.109786
- Title: Accurate Diagnosis of Respiratory Viruses Using an Explainable Machine Learning with Mid-Infrared Biomolecular Fingerprinting of Nasopharyngeal Secretions
- Title(参考訳): 鼻咽喉頭分泌液中赤外生体分子フィンガープリントを用いた説明可能な機械学習による呼吸器ウイルスの正確な診断
- Authors: Wenwen Zhang, Zhouzhuo Tang, Yingmei Feng, Xia Yu, Qi Jie Wang, Zhiping Lin,
- Abstract要約: 呼吸器ウイルス(RV)の正確な同定は、アウトブレイクコントロールと公衆衛生にとって重要である。
本研究では,鼻咽頭内分泌物からのAttenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)とRoPE-SATモデルを組み合わせた診断システムを提案する。
モデル選択された赤外線領域と既知の生体分子の署名とを関連付けることにより,本システムがウイルス特異的なスペクトル指紋を効果的に認識できることを確認した。
- 参考スコア(独自算出の注目度): 14.03608399920969
- License:
- Abstract: Accurate identification of respiratory viruses (RVs) is critical for outbreak control and public health. This study presents a diagnostic system that combines Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) from nasopharyngeal secretions with an explainable Rotary Position Embedding-Sparse Attention Transformer (RoPE-SAT) model to accurately identify multiple RVs within 10 minutes. Spectral data (4000-00 cm-1) were collected, and the bio-fingerprint region (1800-900 cm-1) was employed for analysis. Standard normal variate (SNV) normalization and second-order derivation were applied to reduce scattering and baseline drift. Gradient-weighted class activation mapping (Grad-CAM) was employed to generate saliency maps, highlighting spectral regions most relevant to classification and enhancing the interpretability of model outputs. Two independent cohorts from Beijing Youan Hospital, processed with different viral transport media (VTMs) and drying methods, were evaluated, with one including influenza B, SARS-CoV-2, and healthy controls, and the other including mycoplasma, SARS-CoV-2, and healthy controls. The model achieved sensitivity and specificity above 94.40% across both cohorts. By correlating model-selected infrared regions with known biomolecular signatures, we verified that the system effectively recognizes virus-specific spectral fingerprints, including lipids, Amide I, Amide II, Amide III, nucleic acids, and carbohydrates, and leverages their weighted contributions for accurate classification.
- Abstract(参考訳): 呼吸器ウイルス(RV)の正確な同定は、アウトブレイクコントロールと公衆衛生にとって重要である。
本研究は,鼻咽喉頭分泌物からのAttenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) とRoPE-SAT(Rotary Position Embedding-Sparse Attention Transformer)モデルを組み合わせて10分以内に複数のRVを正確に同定する診断システムを提案する。
スペクトルデータ (4000-00 cm-1) を収集し, バイオフィンガープリント領域 (1800-900 cm-1) を用いて分析を行った。
標準標準変分法(SNV)と2次導出法を適用し,散乱とベースラインドリフトを低減した。
勾配重み付きクラスアクティベーションマッピング (Grad-CAM) を用いて, モデル出力の分類と解釈可能性の向上に最も関係したスペクトル領域を強調した。
インフルエンザB,SARS-CoV-2,健康管理,マイコプラズマ,SARS-CoV-2,健康管理の2つの独立したコホートを,異なるウイルス輸送媒体(VTM)および乾燥法で処理した。
このモデルは両方のコホートで94.40%以上の感度と特異性を達成した。
モデル選択赤外領域と既知の生体分子の署名を関連付けることにより,脂質,アミドI,アミドII,アミドIII,核酸,炭水化物を含むウイルス特異的な指紋を効果的に認識し,それらの重み付けを正確な分類に活用することを確認した。
関連論文リスト
- On-Site Precise Screening of SARS-CoV-2 Systems Using a Channel-Wise Attention-Based PLS-1D-CNN Model with Limited Infrared Signatures [14.03608399920969]
本稿では、減衰された全反射-フーリエ変換赤外分光法(ATR-FTIR)と適応的繰り返し再重み付けされたペナル化最小二乗法(AirPLS)前処理アルゴリズムと、チャネルワイドの注意に基づく畳み込みニューラルネットワーク(PLS-1D-CNN)モデルを統合する手法を提案する。
我々のモデルは、最近、呼吸器ウイルスのスペクトル検出の分野で、96.48%の認識スクリーニング精度、96.24%の感度、97.14%の特異性、96.12%のF1スコア、0.99のAUCを達成している。
論文 参考訳(メタデータ) (2024-10-26T09:22:35Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Accurate Virus Identification with Interpretable Raman Signatures by
Machine Learning [12.184128048998906]
本稿では,ヒトおよび鳥のRamanスペクトルを機械学習で解析する手法を提案する。
スペクトルデータ用に特別に設計された畳み込みニューラルネットワーク(CNN)分類器は、様々なウイルスタイプやサブタイプの識別タスクに対して非常に高い精度を達成する。
論文 参考訳(メタデータ) (2022-06-05T22:31:14Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Frequency comb and machine learning-based breath analysis for COVID-19
classification [0.6113111451963646]
本研究では,各呼吸試料中の数万のスペクトル特性を同時に測定する頑健な分析手法を提案する。
コロラド大学における170個のサンプルを用いて, 受信-操作-特性曲線 0.849(4) のクロスバリデーション領域を報告した。
喫煙や腹痛などの他の変数と同様に,男性と女性の呼吸に有意な差が認められた。
論文 参考訳(メタデータ) (2022-02-04T05:58:52Z) - Machine Intelligence-Driven Classification of Cancer Patients-Derived
Extracellular Vesicles using Fluorescence Correlation Spectroscopy: Results
from a Pilot Study [0.0]
我々は、がん患者血液由来のEVを時間分解分光法と人工知能に結合させることで、がんスクリーニングと追跡ツールを堅牢に提供できると予測した。
我々のパイロット研究は、AIアルゴリズムと時間分解型FCSパワースペクトルが、異なるがんサンプルから複雑な患者由来EVを正確に、微分的に分類できることを実証した。
論文 参考訳(メタデータ) (2022-02-01T15:46:36Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
アミノ酸の順序を保つことで,分類器の精度が向上することを示す。
また,アメリカ疾病予防管理センター(CDC)が報告した,変異の同定に重要な役割を担っているアミノ酸の重要性も示した。
論文 参考訳(メタデータ) (2021-08-07T15:08:15Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - DEEMD: Drug Efficacy Estimation against SARS-CoV-2 based on cell
Morphology with Deep multiple instance learning [8.716655008588361]
sars-cov-2に対する臨床応用に有効な化合物の同定を促進する。
deemdは、複数のインスタンス学習フレームワークでディープニューラルネットワークモデルを使用する計算パイプラインである。
DEEMDはRemdesivirやAloxistatinなどのSARS-CoV-2阻害剤を同定し、我々のアプローチの有効性を裏付ける。
論文 参考訳(メタデータ) (2021-05-10T20:38:34Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。