Development of a PPO-Reinforcement Learned Walking Tripedal Soft-Legged Robot using SOFA
- URL: http://arxiv.org/abs/2504.09242v1
- Date: Sat, 12 Apr 2025 14:46:51 GMT
- Title: Development of a PPO-Reinforcement Learned Walking Tripedal Soft-Legged Robot using SOFA
- Authors: Yomna Mokhtar, Tarek Shohdy, Abdallah A. Hassan, Mostafa Eshra, Omar Elmenawy, Osama Khalil, Haitham El-Hussieny,
- Abstract summary: This paper presents a ready-to-deploy walking, tripedal, soft-legged robot based on PPO-RL.<n>An 82% success rate in reaching a single goal is a groundbreaking output.<n>While trailing the platform steps, outperforming discovery has been observed with an accumulative squared error deviation of 19 mm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rigid robots were extensively researched, whereas soft robotics remains an underexplored field. Utilizing soft-legged robots in performing tasks as a replacement for human beings is an important stride to take, especially under harsh and hazardous conditions over rough terrain environments. For the demand to teach any robot how to behave in different scenarios, a real-time physical and visual simulation is essential. When it comes to soft robots specifically, a simulation framework is still an arduous problem that needs to be disclosed. Using the simulation open framework architecture (SOFA) is an advantageous step. However, neither SOFA's manual nor prior public SOFA projects show its maximum capabilities the users can reach. So, we resolved this by establishing customized settings and handling the framework components appropriately. Settling on perfect, fine-tuned SOFA parameters has stimulated our motivation towards implementing the state-of-the-art (SOTA) reinforcement learning (RL) method of proximal policy optimization (PPO). The final representation is a well-defined, ready-to-deploy walking, tripedal, soft-legged robot based on PPO-RL in a SOFA environment. Robot navigation performance is a key metric to be considered for measuring the success resolution. Although in the simulated soft robots case, an 82\% success rate in reaching a single goal is a groundbreaking output, we pushed the boundaries to further steps by evaluating the progress under assigning a sequence of goals. While trailing the platform steps, outperforming discovery has been observed with an accumulative squared error deviation of 19 mm. The full code is publicly available at \href{https://github.com/tarekshohdy/PPO_SOFA_Soft_Legged_Robot.git}{github.com/tarekshohdy/PPO$\textunderscore$SOFA$\textunderscore$Soft$\textunderscore$Legged$\textund erscore$ Robot.git}
Related papers
- The One RING: a Robotic Indoor Navigation Generalist [58.431772508378344]
RING (Robotic Indoor Navigation Generalist) is an embodiment-agnostic policy.<n>It is trained solely in simulation with diverse randomly embodiments at scale.<n>It achieves an average of 72.1% and 78.9% success rate across 5 embodiments in simulation and 4 robot platforms in the real world.
arXiv Detail & Related papers (2024-12-18T23:15:41Z) - GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning [82.46975428739329]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.<n>We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.<n>These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models.
Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions.
Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation.
arXiv Detail & Related papers (2023-10-04T07:56:42Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved
Proximal Policy Optimization [6.067589886362815]
In this paper, we train a deep neural network via an improved Proximal Policy Optimization (PPO) algorithm to map from task space to joint space for a 6-DoF manipulator.
Since training such a task in real-robot is time-consuming and strenuous, we develop a simulation environment to train the model.
Experimental results showed that using our method, the robot was capable of tracking a single target or reaching multiple targets in unstructured environments.
arXiv Detail & Related papers (2022-10-03T10:21:57Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - A Learning Approach to Robot-Agnostic Force-Guided High Precision
Assembly [6.062589413216726]
We propose a learning approach to high-precision robotic assembly problems.
We focus on the contact-rich phase, where the assembly pieces are in close contact with each other.
Our training environment is robotless, as the end-effector is not attached to any specific robot.
arXiv Detail & Related papers (2020-10-15T22:33:43Z) - Smooth Exploration for Robotic Reinforcement Learning [11.215352918313577]
Reinforcement learning (RL) enables robots to learn skills from interactions with the real world.
In practice, the unstructured step-based exploration used in Deep RL leads to jerky motion patterns on real robots.
We address these issues by adapting state-dependent exploration (SDE) to current Deep RL algorithms.
arXiv Detail & Related papers (2020-05-12T12:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.