論文の概要: Text To 3D Object Generation For Scalable Room Assembly
- arxiv url: http://arxiv.org/abs/2504.09328v1
- Date: Sat, 12 Apr 2025 20:13:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:08.008920
- Title: Text To 3D Object Generation For Scalable Room Assembly
- Title(参考訳): スケーラブルルームアセンブリのためのテキストから3Dオブジェクト生成
- Authors: Sonia Laguna, Alberto Garcia-Garcia, Marie-Julie Rakotosaona, Stylianos Moschoglou, Leonhard Helminger, Sergio Orts-Escolano,
- Abstract要約: 本稿では,スケーラブルで高品質でカスタマイズ可能な室内3Dシーンのための,合成データ生成のためのエンドツーエンドシステムを提案する。
本システムはテキストプロンプトから高忠実度3Dオブジェクトアセットを生成し,レンダリングツールを用いて事前に定義されたフロアプランに組み込む。
- 参考スコア(独自算出の注目度): 9.275648239993703
- License:
- Abstract: Modern machine learning models for scene understanding, such as depth estimation and object tracking, rely on large, high-quality datasets that mimic real-world deployment scenarios. To address data scarcity, we propose an end-to-end system for synthetic data generation for scalable, high-quality, and customizable 3D indoor scenes. By integrating and adapting text-to-image and multi-view diffusion models with Neural Radiance Field-based meshing, this system generates highfidelity 3D object assets from text prompts and incorporates them into pre-defined floor plans using a rendering tool. By introducing novel loss functions and training strategies into existing methods, the system supports on-demand scene generation, aiming to alleviate the scarcity of current available data, generally manually crafted by artists. This system advances the role of synthetic data in addressing machine learning training limitations, enabling more robust and generalizable models for real-world applications.
- Abstract(参考訳): 深度推定やオブジェクトトラッキングといったシーン理解のための現代の機械学習モデルは、現実世界のデプロイメントシナリオを模倣する大規模で高品質なデータセットに依存している。
データ不足に対処するため、スケーラブルで高品質でカスタマイズ可能な室内3Dシーンのための合成データ生成のためのエンドツーエンドシステムを提案する。
本システムは,テキストプロンプトから高忠実度3Dオブジェクトアセットを生成し,レンダリングツールを用いて事前に定義されたフロアプランに組み込む。
既存の手法に新たな損失関数とトレーニング戦略を導入することで、オンデマンドのシーン生成をサポートし、アーティストが手作業で作成する現在のデータの不足を軽減する。
このシステムは、機械学習トレーニングの制限に対処する上で、合成データの役割を前進させ、現実世界のアプリケーションに対してより堅牢で一般化可能なモデルを可能にする。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - A survey of synthetic data augmentation methods in computer vision [0.0]
本稿では,合成データ拡張技術について概観する。
我々は、重要なデータ生成と拡張技術、アプリケーション全般の範囲、および特定のユースケースに焦点を当てる。
コンピュータビジョンモデルをトレーニングするための一般的な合成データセットの要約を提供する。
論文 参考訳(メタデータ) (2024-03-15T07:34:08Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
CADモデルから生成されたオブジェクトポーズ推定のための新しい合成データセットであるSyntheticP3Dを紹介する。
逆レンダリングによるポーズ推定を行うニューラルネットワークモデルをトレーニングするための新しいアプローチ(CC3D)を提案する。
論文 参考訳(メタデータ) (2023-05-25T14:56:03Z) - T2TD: Text-3D Generation Model based on Prior Knowledge Guidance [74.32278935880018]
本稿では,3次元生成モデルの性能向上のための先行知識として,関連した形状やテキスト情報を導入した新しいテキスト3D生成モデル(T2TD)を提案する。
提案手法は,3次元モデル生成精度を大幅に向上し,text2shapeデータセット上でSOTA法よりも優れる。
論文 参考訳(メタデータ) (2023-05-25T06:05:52Z) - Hands-Up: Leveraging Synthetic Data for Hands-On-Wheel Detection [0.38233569758620045]
この研究は、ドライバモニタリングシステムのトレーニングに合成フォトリアリスティックインキャビンデータを使用することを実証する。
プラットフォームでエラー解析を行い、欠落したエッジケースを生成することで、パフォーマンスが向上することを示す。
これは、人間中心の合成データが現実世界にうまく一般化する能力を示している。
論文 参考訳(メタデータ) (2022-05-31T23:34:12Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - Scalable Scene Flow from Point Clouds in the Real World [30.437100097997245]
オープンデータセットに基づくシーンフローの大規模ベンチマークを新たに導入します。
実際のLiDARデータの量に基づいて、これまでの作業がバウンドされているかを示す。
フルポイントクラウド上でリアルタイム推論を提供するモデルアーキテクチャFastFlow3Dを紹介します。
論文 参考訳(メタデータ) (2021-03-01T20:56:05Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。