論文の概要: Beyond Degradation Conditions: All-in-One Image Restoration via HOG Transformers
- arxiv url: http://arxiv.org/abs/2504.09377v1
- Date: Sat, 12 Apr 2025 23:52:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:13.180714
- Title: Beyond Degradation Conditions: All-in-One Image Restoration via HOG Transformers
- Title(参考訳): 劣化条件を超えて:HOG変換器によるオールインワン画像復元
- Authors: Jiawei Wu, Zhifei Yang, Zhe Wang, Zhi Jin,
- Abstract要約: 本稿では,Histograms of Oriented Gradients (HOG) によるオールインワン画像復元フレームワーク HOGformer を提案する。
HOGディスクリプタの劣化識別能力を活用することで、HOGformerは動的自己認識機構を採用する。
悪天候や自然劣化など、さまざまなベンチマークによる実験は、HOGformerが最先端のパフォーマンスを達成することを実証している。
- 参考スコア(独自算出の注目度): 23.153283910821862
- License:
- Abstract: All-in-one image restoration, which aims to address diverse degradations within a unified framework, is critical for practical applications. However, existing methods rely on predicting and integrating degradation conditions, which can misactivate degradation-specific features in complex scenarios, limiting their restoration performance. To address this issue, we propose a novel all-in-one image restoration framework guided by Histograms of Oriented Gradients (HOG), named HOGformer. By leveraging the degradation-discriminative capability of HOG descriptors, HOGformer employs a dynamic self-attention mechanism that adaptively attends to long-range spatial dependencies based on degradation-aware HOG cues. To enhance the degradation sensitivity of attention inputs, we design a HOG-guided local dynamic-range convolution module that captures long-range degradation similarities while maintaining awareness of global structural information. Furthermore, we propose a dynamic interaction feed-forward module, efficiently increasing the model capacity to adapt to different degradations through channel-spatial interactions. Extensive experiments across diverse benchmarks, including adverse weather and natural degradations, demonstrate that HOGformer achieves state-of-the-art performance and generalizes effectively to complex real-world degradations. Code is available at https://github.com/Fire-friend/HOGformer.
- Abstract(参考訳): 統一されたフレームワーク内での多様な劣化に対処することを目的としたオールインワン画像復元は、実用上重要な課題である。
しかし、既存の手法は劣化条件の予測と統合に依存しており、複雑なシナリオにおける劣化固有の特徴を誤作動させ、回復性能を制限できる。
この問題に対処するため,Histograms of Oriented Gradients (HOG) によるオールインワン画像復元フレームワーク HOGformer を提案する。
HOGディスクリプタの劣化識別能力を活用することで、HOGformerは、分解認識されたHOGキューに基づいて、長距離空間依存に適応的に参画する動的自己認識機構を採用する。
注意入力の劣化感度を高めるため,世界構造情報の認識を維持しつつ,長距離劣化類似性を捉えたHOG誘導局所動的レンジ畳み込みモジュールを設計した。
さらに,チャネル間相互作用による異なる劣化に対応するために,モデルキャパシティを効率的に向上する動的相互作用フィードフォワードモジュールを提案する。
悪天候や自然劣化を含む様々なベンチマークにわたる大規模な実験は、HOGformerが最先端のパフォーマンスを達成し、複雑な現実世界の劣化を効果的に一般化することを示した。
コードはhttps://github.com/Fire-friend/HOGformer.comから入手できる。
関連論文リスト
- Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
RGB画像からのHSI再構成のための相関連続性ネットワーク(CCNet)を提案する。
局所スペクトルの相関について,GrSCM(Group-wise Spectral correlation Modeling)モジュールを紹介する。
グローバルスペクトルの連続性のために、我々はNeSCMモジュールを設計する。
論文 参考訳(メタデータ) (2025-01-02T15:14:40Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - PromptHSI: Universal Hyperspectral Image Restoration with Vision-Language Modulated Frequency Adaptation [28.105125164852367]
本稿では,初のユニバーサルAiO HSI復元フレームワークであるPromptHSIを提案する。
提案手法では,テキストプロンプトを強度とバイアスコントローラに分解し,回復過程を効果的に導く。
我々のアーキテクチャは、さまざまな劣化シナリオにおいて、きめ細かい回復とグローバルな情報復元の両方に優れています。
論文 参考訳(メタデータ) (2024-11-24T17:08:58Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
現実のシナリオでは、画像障害はしばしば複合的な劣化として現れ、低光、迷路、雨、雪といった要素の複雑な相互作用を示す。
本研究では, 複雑な複合劣化シナリオを正確に表現するために, 4つの物理劣化パラダイムを統合した多目的イメージングモデルを提案する。
OneRestoreは、適応的で制御可能なシーン復元のために設計された新しいトランスフォーマーベースのフレームワークである。
論文 参考訳(メタデータ) (2024-07-05T16:27:00Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
我々は,低ランク体制下での学習者(DaLe)を用いた効率的なオールインワン画像復元システムである textitDaAIR を提案する。
モデルキャパシティを入力劣化に動的に割り当てることにより、総合学習と特定の学習を統合した効率的な復調器を実現する。
論文 参考訳(メタデータ) (2024-05-24T11:53:27Z) - Efficient Real-world Image Super-Resolution Via Adaptive Directional Gradient Convolution [80.85121353651554]
畳み込みカーネル内でのカーネル単位の微分演算を導入し、学習可能な方向勾配畳み込みを開発する。
これらの畳み込みは、新しい線形重み付け機構と平行に統合され、適応方向勾配畳み込み(DGConv)を形成する。
さらに,適応情報相互作用ブロック(AIIBlock)を設計し,テクスチャとコントラストの強化のバランスをとるとともに,相互依存性を慎重に検討し,単純な積み重ねによるリアルSRのためのDGPNetを作成する。
論文 参考訳(メタデータ) (2024-05-11T14:21:40Z) - Boosting Visual Recognition in Real-world Degradations via Unsupervised Feature Enhancement Module with Deep Channel Prior [22.323789227447755]
霧、低照度、動きのぼかしは画像の品質を低下させ、自動運転の安全性を脅かす。
本研究は、劣化した視覚認識のための新しいDeep Channel Prior (DCP)を提案する。
これに基づいて、教師なし特徴補正を実現するために、新しいプラグアンドプレイunsupervised Feature Enhancement Module (UFEM)を提案する。
論文 参考訳(メタデータ) (2024-04-02T07:16:56Z) - DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion [27.52552274944687]
低解像度画像のコンテンツや劣化を認識する拡散モデルの能力を高める新しい2段階の劣化認識フレームワークを提案する。
最初の段階では、教師なしのコントラスト学習を用いて画像劣化の表現を得る。
第2段階では、分解対応モジュールを単純化されたControlNetに統合し、様々な劣化への柔軟な適応を可能にします。
論文 参考訳(メタデータ) (2024-03-31T12:07:04Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
画像復元モデルの一般化を改善するための代替手法を提案する。
ローカル,グローバル,チャネル表現ベースをキャプチャするマルチブランチ設計のMixture-of-Experts (MoE) であるAdaptIRを提案する。
我々のAdaptIRは、単一劣化タスクにおける安定した性能を実現し、8時間間、微調整はわずか0.6%のパラメータしか持たず、ハイブリッド劣化タスクにおいて優れる。
論文 参考訳(メタデータ) (2023-12-12T14:27:59Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
オールインワンVRのためのクロスコンセントディープ・アンフォールディング・ネットワーク(CDUN)を提案する。
2つのカスケード手順を編成することにより、CDUNは様々な劣化に対する適応的な処理を達成する。
さらに、より隣接するフレームからの情報を活用するために、ウィンドウベースのフレーム間融合戦略を導入する。
論文 参考訳(メタデータ) (2023-09-04T14:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。