Comorbidity-Informed Transfer Learning for Neuro-developmental Disorder Diagnosis
- URL: http://arxiv.org/abs/2504.09463v1
- Date: Sun, 13 Apr 2025 07:30:55 GMT
- Title: Comorbidity-Informed Transfer Learning for Neuro-developmental Disorder Diagnosis
- Authors: Xin Wen, Shijie Guo, Wenbo Ning, Rui Cao, Jie Xiang, Xiaobo Liu, Jintai Chen,
- Abstract summary: Comorbidity-In Transfer Learning framework for neuro-developmental disorders using fMRI.<n>New reinforced representation generation network is proposed.<n>Results demonstrate that CITL achieves competitive accuracies of 76.32% and 73.15% for detecting autism spectrum disorder and attention deficit hyperactivity disorder.
- Score: 26.634912866633925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuro-developmental disorders are manifested as dysfunctions in cognition, communication, behaviour and adaptability, and deep learning-based computer-aided diagnosis (CAD) can alleviate the increasingly strained healthcare resources on neuroimaging. However, neuroimaging such as fMRI contains complex spatio-temporal features, which makes the corresponding representations susceptible to a variety of distractions, thus leading to less effective in CAD. For the first time, we present a Comorbidity-Informed Transfer Learning(CITL) framework for diagnosing neuro-developmental disorders using fMRI. In CITL, a new reinforced representation generation network is proposed, which first combines transfer learning with pseudo-labelling to remove interfering patterns from the temporal domain of fMRI and generates new representations using encoder-decoder architecture. The new representations are then trained in an architecturally simple classification network to obtain CAD model. In particular, the framework fully considers the comorbidity mechanisms of neuro-developmental disorders and effectively integrates them with semi-supervised learning and transfer learning, providing new perspectives on interdisciplinary. Experimental results demonstrate that CITL achieves competitive accuracies of 76.32% and 73.15% for detecting autism spectrum disorder and attention deficit hyperactivity disorder, respectively, which outperforms existing related transfer learning work for 7.2% and 0.5% respectively.
Related papers
- NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders [8.693515007203429]
We propose NeuroTree to overcome limitations of existing fMRI-based graph convolutional networks.<n>NeuroTree integrates a k-hop AGE-GCN with neural ordinary differential equations (ODEs) to optimize functional connectivity.<n>Our empirical evaluations demonstrate that NeuroTree achieves state-of-the-art performance across two distinct mental disorder datasets.
arXiv Detail & Related papers (2025-02-26T03:42:58Z) - Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks [1.2115617129203957]
Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions.
We present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model.
BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences.
arXiv Detail & Related papers (2024-10-14T20:21:11Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [17.27095141003757]
This paper proposes the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging.<n>The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging, showing promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
arXiv Detail & Related papers (2024-07-16T11:31:38Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning? [0.0]
We introduce unsupervised graph representations that explicitly map the neural mechanisms of a core aspect of ASD.
First results from functional-near infrared spectroscopy data indicate potential predictive capacities of a task-agnostic, interpretable graph representation.
arXiv Detail & Related papers (2022-08-17T07:10:57Z) - Classification of ADHD Patients Using Kernel Hierarchical Extreme
Learning Machine [3.39487428163997]
We utilize the dynamics of brain functional connectivity to model features from medical imaging data.
Our results achieved superior classification rates compared to the state-of-the-art models.
arXiv Detail & Related papers (2022-06-28T05:17:54Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.