Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- URL: http://arxiv.org/abs/2410.11064v2
- Date: Mon, 18 Nov 2024 15:29:05 GMT
- Title: Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- Authors: Rui Sherry Shen, Yusuf Osmanlıoğlu, Drew Parker, Darien Aunapu, Benjamin E. Yerys, Birkan Tunç, Ragini Verma,
- Abstract summary: Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions.
We present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model.
BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences.
- Score: 1.2115617129203957
- License:
- Abstract: Divergent brain connectivity is thought to underlie the behavioral and cognitive symptoms observed in many neurodevelopmental disorders. Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions. While advanced neuroimaging techniques, such as diffusion MRI (dMRI), have facilitated the mapping of brain's structural connectome, the challenge lies in accurately modeling developmental trajectories within these complex networked structures to create robust neurodivergence markers. In this work, we present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model to create a reference trajectory of connectivity transformation as part of neurotypical development. This will enable the assessment of neurodivergence by comparing individuals to the established neurotypical trajectory. BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences. Application of BRIDGE to a large cohort of children with autism spectrum disorder demonstrates that the global neurodivergence score correlates with clinical assessments in autism, and the regional map offers insights into the heterogeneity at the individual level in neurodevelopmental disorders. Together, the neurodivergence score and map form powerful tools for quantifying developmental divergence in connectivity patterns, advancing the development of imaging markers for personalized diagnosis and intervention in various clinical contexts.
Related papers
- Diffusion Models for Computational Neuroimaging: A Survey [20.24146298881525]
Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior.
diffusion models have shown stability and high-quality generation in natural images.
There is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding.
arXiv Detail & Related papers (2025-02-10T15:20:07Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [6.682531937245544]
This paper proposes the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging.
The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging.
It shows promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
arXiv Detail & Related papers (2024-07-16T11:31:38Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) framework designed to predict cognitive metrics based on Functional Connectivity (FC)
Empirical validation on the Philadelphia Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of our model.
arXiv Detail & Related papers (2024-01-18T19:28:26Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
Alzheimers disease (AD) is a heterogeneous, multitemporal neurodegenerative disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
We propose a novel pathology steered stratification network (PSSN) that incorporates established domain knowledge in AD pathology through a reaction-diffusion model.
arXiv Detail & Related papers (2022-10-12T02:52:00Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.