ConnectomeDiffuser: Generative AI Enables Brain Network Construction from Diffusion Tensor Imaging
- URL: http://arxiv.org/abs/2505.22683v1
- Date: Fri, 23 May 2025 15:03:58 GMT
- Title: ConnectomeDiffuser: Generative AI Enables Brain Network Construction from Diffusion Tensor Imaging
- Authors: Xuhang Chen, Michael Kwok-Po Ng, Kim-Fung Tsang, Chi-Man Pun, Shuqiang Wang,
- Abstract summary: Brain network analysis plays a crucial role in diagnosing and monitoring neurodegenerative disorders such as Alzheimer's disease (AD)<n>Existing approaches for constructing structural brain networks from diffusion tensor imaging (DTI) often rely on specialized toolkits that suffer from inherent limitations.<n>This work proposes a novel diffusion-based framework for automated end-to-end brain network construction from DTI.
- Score: 36.89452147894995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain network analysis plays a crucial role in diagnosing and monitoring neurodegenerative disorders such as Alzheimer's disease (AD). Existing approaches for constructing structural brain networks from diffusion tensor imaging (DTI) often rely on specialized toolkits that suffer from inherent limitations: operator subjectivity, labor-intensive workflows, and restricted capacity to capture complex topological features and disease-specific biomarkers. To overcome these challenges and advance computational neuroimaging instrumentation, ConnectomeDiffuser is proposed as a novel diffusion-based framework for automated end-to-end brain network construction from DTI. The proposed model combines three key components: (1) a Template Network that extracts topological features from 3D DTI scans using Riemannian geometric principles, (2) a diffusion model that generates comprehensive brain networks with enhanced topological fidelity, and (3) a Graph Convolutional Network classifier that incorporates disease-specific markers to improve diagnostic accuracy. ConnectomeDiffuser demonstrates superior performance by capturing a broader range of structural connectivity and pathology-related information, enabling more sensitive analysis of individual variations in brain networks. Experimental validation on datasets representing two distinct neurodegenerative conditions demonstrates significant performance improvements over other brain network methods. This work contributes to the advancement of instrumentation in the context of neurological disorders, providing clinicians and researchers with a robust, generalizable measurement framework that facilitates more accurate diagnosis, deeper mechanistic understanding, and improved therapeutic monitoring of neurodegenerative diseases such as AD.
Related papers
- Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis [6.351889311288302]
We propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN)<n>I2B-HGNN applies information bottleneck principles to guide both brain connectivity modeling and cross-modal feature integration.<n>We show that I2B-HGNN achieves superior performance in diagnosing NDDs, exhibiting both high classification accuracy and the ability to provide interpretable biomarker identification.
arXiv Detail & Related papers (2025-02-28T06:41:55Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
We introduce BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series.
We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts.
arXiv Detail & Related papers (2023-11-09T08:27:12Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
arXiv Detail & Related papers (2023-06-16T05:22:25Z) - PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis [39.16619345610152]
We propose PTGB, a GNN pre-training framework that captures intrinsic brain network structures, regardless of clinical outcomes, and is easily adaptable to various downstream tasks.
PTGB comprises two key components: (1) an unsupervised pre-training technique designed specifically for brain networks, which enables learning from large-scale datasets without task-specific labels; (2) a data-driven parcellation atlas mapping pipeline that facilitates knowledge transfer across datasets with different ROI systems.
arXiv Detail & Related papers (2023-05-20T21:07:47Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.