論文の概要: Reduction of Supervision for Biomedical Knowledge Discovery
- arxiv url: http://arxiv.org/abs/2504.09582v1
- Date: Sun, 13 Apr 2025 14:05:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:02.505280
- Title: Reduction of Supervision for Biomedical Knowledge Discovery
- Title(参考訳): バイオメディカル知識発見のためのスーパービジョンの削減
- Authors: Christos Theodoropoulos, Andrei Catalin Coman, James Henderson, Marie-Francine Moens,
- Abstract要約: 知識抽出と処理に自動化手法を採用することが不可欠である。
監督レベルとモデルの有効性の間の適切なバランスを見つけることは、大きな課題である。
本研究は,非構造化テキストにおけるバイオメディカルエンティティ間の意味的関係の同定という課題に対処する。
- 参考スコア(独自算出の注目度): 28.68816381566995
- License:
- Abstract: Knowledge discovery is hindered by the increasing volume of publications and the scarcity of extensive annotated data. To tackle the challenge of information overload, it is essential to employ automated methods for knowledge extraction and processing. Finding the right balance between the level of supervision and the effectiveness of models poses a significant challenge. While supervised techniques generally result in better performance, they have the major drawback of demanding labeled data. This requirement is labor-intensive and time-consuming and hinders scalability when exploring new domains. In this context, our study addresses the challenge of identifying semantic relationships between biomedical entities (e.g., diseases, proteins) in unstructured text while minimizing dependency on supervision. We introduce a suite of unsupervised algorithms based on dependency trees and attention mechanisms and employ a range of pointwise binary classification methods. Transitioning from weakly supervised to fully unsupervised settings, we assess the methods' ability to learn from data with noisy labels. The evaluation on biomedical benchmark datasets explores the effectiveness of the methods. Our approach tackles a central issue in knowledge discovery: balancing performance with minimal supervision. By gradually decreasing supervision, we assess the robustness of pointwise binary classification techniques in handling noisy labels, revealing their capability to shift from weakly supervised to entirely unsupervised scenarios. Comprehensive benchmarking offers insights into the effectiveness of these techniques, suggesting an encouraging direction toward adaptable knowledge discovery systems, representing progress in creating data-efficient methodologies for extracting useful insights when annotated data is limited.
- Abstract(参考訳): 知識発見は、出版物の量の増加と広範な注釈付きデータの不足によって妨げられている。
情報過負荷の課題に対処するためには,知識抽出と処理に自動化手法を採用することが不可欠である。
監督レベルとモデルの有効性の間の適切なバランスを見つけることは、大きな課題である。
教師付き技術は一般的にパフォーマンスが向上するが、ラベル付きデータの要求には大きな欠点がある。
この要件は労働集約的であり、時間を要するため、新しいドメインを探索する際のスケーラビリティを妨げる。
本研究は, バイオメディカルな実体(疾患, タンパク質など)間の意味的関係を非構造化テキストで識別する上で, 監督への依存を最小限に抑えるという課題に対処するものである。
本稿では,依存木とアテンション機構に基づく教師なしアルゴリズムのスイートを導入し,ポイントワイドなバイナリ分類手法を多用する。
弱い教師付き設定から完全に教師なし設定に移行することで、ノイズのあるラベルを持つデータから学習する手法の能力を評価する。
バイオメディカル・ベンチマーク・データセットの評価は,本手法の有効性について検討する。
我々のアプローチは、知識発見における中心的な問題に取り組み、最小限の監督とパフォーマンスのバランスをとる。
徐々に監督を減らし,ノイズラベル処理における二分法手法の頑健さを評価し,教師なしの弱さから教師なしのシナリオへ移行する能力を明らかにした。
総合的なベンチマークはこれらの手法の有効性に関する洞察を与え、適応可能な知識発見システムへの奨励的な方向を示唆し、注釈付きデータが制限された場合に有用な洞察を抽出するためのデータ効率のよい方法論の作成の進歩を表している。
関連論文リスト
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Shifting to Machine Supervision: Annotation-Efficient Semi and Self-Supervised Learning for Automatic Medical Image Segmentation and Classification [9.67209046726903]
我々は、自己教師型および半教師型学習の進歩を活用する新しいアプローチであるS4MIパイプラインを紹介する。
本研究は、これらの手法を3つの異なる医用画像データセット上で評価し、分類と分割作業の有効性を評価する。
注目すべきは、半教師付きアプローチはセグメンテーションにおいて優れた結果を示し、全データセットで50%少ないラベルを使用しながら、完全な教師付き手法よりも優れた結果を示したことだ。
論文 参考訳(メタデータ) (2023-11-17T04:04:29Z) - InstructBio: A Large-scale Semi-supervised Learning Paradigm for
Biochemical Problems [38.57333125315448]
InstructMolは、ラベルなし例をうまく活用するための半教師付き学習アルゴリズムである。
InstructBioは分子モデルの一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2023-04-08T04:19:22Z) - Label Propagation with Weak Supervision [47.52032178837098]
古典的ラベル伝搬アルゴリズム(LPA)の新しい解析法について紹介する(Zhu & Ghahramani, 2002)。
基礎となるグラフの局所的幾何学的性質と先行情報の品質の両方を利用する誤差境界を提供する。
提案手法は,従来の半教師付き手法と弱教師付き手法を改良した,弱教師付き分類タスクに応用できることを実証する。
論文 参考訳(メタデータ) (2022-10-07T14:53:02Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation [4.935055133266873]
本研究では,モデルが意図的に領域を学習するための新しい不確実性認識方式を提案する。
具体的には,不確実性マップを得るためにモンテカルロサンプリングを推定法として利用する。
後ろ向きのプロセスでは、ネットワークの収束を加速するために、教師なしの損失と教師なしの損失を共同で処理する。
論文 参考訳(メタデータ) (2021-11-23T03:26:24Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
大きなラベル付きデータセットでニューラルネットワークをトレーニングすることは、計算病理学において依然として支配的なパラダイムである。
本研究では,非教師付き表現学習のための強力な監視信号を学ぶために,ヒストロジ全体スライディング画像の背景となる多段階的文脈的手がかりを利用する自己教師付きプレテキストタスクを提案する。
また,タスク固有の未ラベルデータとの予測整合性に基づいて,事前学習した表現を下流タスクに効果的に転送することを学ぶ教師による半教師付き一貫性パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-07T19:46:21Z) - Disambiguation of weak supervision with exponential convergence rates [88.99819200562784]
教師付き学習では、データは不完全で差別的な情報で注釈付けされる。
本稿では,ある入力から潜在的な対象のセットが与えられる弱い監督の事例である部分的ラベリングに焦点を当てる。
弱い監督から完全な監督を回復する実証的曖昧化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-04T18:14:32Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Semi-supervised and Unsupervised Methods for Heart Sounds Classification
in Restricted Data Environments [4.712158833534046]
本研究は、PhyloNet/CinC 2016 Challengeデータセット上で、様々な教師付き、半教師付き、教師なしのアプローチを用いる。
GANをベースとした半教師付き手法が提案され,非ラベルデータサンプルを用いてデータ分散の学習を促進できる。
特に、1D CNN Autoencoderと1クラスSVMを併用した教師なし特徴抽出は、データラベル付けなしで優れた性能が得られる。
論文 参考訳(メタデータ) (2020-06-04T02:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。