Ges3ViG: Incorporating Pointing Gestures into Language-Based 3D Visual Grounding for Embodied Reference Understanding
- URL: http://arxiv.org/abs/2504.09623v1
- Date: Sun, 13 Apr 2025 15:43:06 GMT
- Title: Ges3ViG: Incorporating Pointing Gestures into Language-Based 3D Visual Grounding for Embodied Reference Understanding
- Authors: Atharv Mahesh Mane, Dulanga Weerakoon, Vigneshwaran Subbaraju, Sougata Sen, Sanjay E. Sarma, Archan Misra,
- Abstract summary: 3-Dimensional Embodied Reference Understanding (3D-ERU) combines a language description and an accompanying pointing gesture to identify the most relevant target object in a 3D scene.<n>We introduce a data augmentation framework-Imputer, and use it to curate a new benchmark dataset-ImputeRefer for 3D-ERU.<n>We also propose Ges3ViG, a novel model for 3D-ERU that achieves 30% improvement in accuracy as compared to other 3D-ERU models and 9% compared to other purely language-based 3D grounding models.
- Score: 5.568166420745467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3-Dimensional Embodied Reference Understanding (3D-ERU) combines a language description and an accompanying pointing gesture to identify the most relevant target object in a 3D scene. Although prior work has explored pure language-based 3D grounding, there has been limited exploration of 3D-ERU, which also incorporates human pointing gestures. To address this gap, we introduce a data augmentation framework-Imputer, and use it to curate a new benchmark dataset-ImputeRefer for 3D-ERU, by incorporating human pointing gestures into existing 3D scene datasets that only contain language instructions. We also propose Ges3ViG, a novel model for 3D-ERU that achieves ~30% improvement in accuracy as compared to other 3D-ERU models and ~9% compared to other purely language-based 3D grounding models. Our code and dataset are available at https://github.com/AtharvMane/Ges3ViG.
Related papers
- Unifying 2D and 3D Vision-Language Understanding [85.84054120018625]
We introduce UniVLG, a unified architecture for 2D and 3D vision-language learning.<n>UniVLG bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems.
arXiv Detail & Related papers (2025-03-13T17:56:22Z) - UniGS: Unified Language-Image-3D Pretraining with Gaussian Splatting [68.37013525040891]
We propose UniGS, integrating 3D Gaussian Splatting (3DGS) into multi-modal pre-training to enhance the 3D representation.<n>We demonstrate the effectiveness of UniGS in learning a more general and stronger aligned multi-modal representation.
arXiv Detail & Related papers (2025-02-25T05:10:22Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3D visual grounding aims to correlate a natural language description with the target object within a 3D scene.<n>Existing approaches commonly encounter a shortage of text3D pairs available for training.<n>We propose AugRefer, a novel approach for advancing 3D visual grounding.
arXiv Detail & Related papers (2025-01-16T09:57:40Z) - ViGiL3D: A Linguistically Diverse Dataset for 3D Visual Grounding [9.289977174410824]
3D visual grounding involves localizing entities in a 3D scene referred to by natural language text.
We introduce Visual Grounding with Diverse Language in 3D (ViGiL3D), a diagnostic dataset for evaluating visual grounding methods against a diverse set of language patterns.
arXiv Detail & Related papers (2025-01-02T17:20:41Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding [37.47195477043883]
3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents.
We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes.
We demonstrate this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS) for 3D vision-language learning.
arXiv Detail & Related papers (2024-01-17T17:04:35Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
Large language models (LLMs) and Vision-Language Models (VLMs) have been proven to excel at multiple tasks, such as commonsense reasoning.
We propose to inject the 3D world into large language models and introduce a new family of 3D-LLMs.
Specifically, 3D-LLMs can take 3D point clouds and their features as input and perform a diverse set of 3D-related tasks.
arXiv Detail & Related papers (2023-07-24T17:59:02Z) - Cross3DVG: Cross-Dataset 3D Visual Grounding on Different RGB-D Scans [6.936271803454143]
We present a novel task for cross-dataset visual grounding in 3D scenes (Cross3DVG)
We created RIORefer, a large-scale 3D visual grounding dataset.
It includes more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan.
arXiv Detail & Related papers (2023-05-23T09:52:49Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.