論文の概要: Uncertainty Guided Refinement for Fine-Grained Salient Object Detection
- arxiv url: http://arxiv.org/abs/2504.09666v1
- Date: Sun, 13 Apr 2025 17:34:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:51:54.927265
- Title: Uncertainty Guided Refinement for Fine-Grained Salient Object Detection
- Title(参考訳): 不確かさガイドによる微粒な局所物体検出
- Authors: Yao Yuan, Pan Gao, Qun Dai, Jie Qin, Wei Xiang,
- Abstract要約: 我々は、正当性物体検出(SOD)に対する不確実性誘導学習手法を導入する。
我々は、新しい不確実性ガイド型リファインメント注意ネットワーク(UGRAN)を設計する。
7つのベンチマークデータセットの実験は、最先端の方法論よりも提案されたUGRANの方が優れていることを示している。
- 参考スコア(独自算出の注目度): 35.6505339733396
- License:
- Abstract: Recently, salient object detection (SOD) methods have achieved impressive performance. However, salient regions predicted by existing methods usually contain unsaturated regions and shadows, which limits the model for reliable fine-grained predictions. To address this, we introduce the uncertainty guidance learning approach to SOD, intended to enhance the model's perception of uncertain regions. Specifically, we design a novel Uncertainty Guided Refinement Attention Network (UGRAN), which incorporates three important components, i.e., the Multilevel Interaction Attention (MIA) module, the Scale Spatial-Consistent Attention (SSCA) module, and the Uncertainty Refinement Attention (URA) module. Unlike conventional methods dedicated to enhancing features, the proposed MIA facilitates the interaction and perception of multilevel features, leveraging the complementary characteristics among multilevel features. Then, through the proposed SSCA, the salient information across diverse scales within the aggregated features can be integrated more comprehensively and integrally. In the subsequent steps, we utilize the uncertainty map generated from the saliency prediction map to enhance the model's perception capability of uncertain regions, generating a highly-saturated fine-grained saliency prediction map. Additionally, we devise an adaptive dynamic partition (ADP) mechanism to minimize the computational overhead of the URA module and improve the utilization of uncertainty guidance. Experiments on seven benchmark datasets demonstrate the superiority of the proposed UGRAN over the state-of-the-art methodologies. Codes will be released at https://github.com/I2-Multimedia-Lab/UGRAN.
- Abstract(参考訳): 近年,Salient Object Detection (SOD) 法は優れた性能を発揮している。
しかし、既存の手法によって予測される健全な領域は、通常不飽和領域と影を含み、信頼性の高いきめ細かい予測のモデルを制限する。
そこで本研究では,不確実領域に対するモデルの認識を高めることを目的とした,不確実性指導学習アプローチをSODに導入する。
具体的には,Multilevel Interaction Attention(MIA)モジュール,Scale Spatial-Consistent Attention(SSCA)モジュール,Uncertainty Refinement Attention(URA)モジュールの3つの重要なコンポーネントを組み込んだ,新しいUncertainty Guided Refinement Attention Network(UGRAN)を設計する。
機能強化に特化した従来の手法とは異なり、提案手法は多レベル特徴の相互作用と認識を容易にし、多レベル特徴間の相補的特徴を活用する。
そして,提案したSSCAにより,集約された特徴の中で,多様な規模にまたがる有能な情報をより包括的かつ一体的に統合することができる。
その後のステップでは、不確実性予測マップから生成された不確実性マップを利用して、不確かさ領域のモデル知覚能力を向上し、高度に飽和した細粒度唾液性予測マップを生成する。
さらに、URAモジュールの計算オーバーヘッドを最小化し、不確実性ガイダンスの利用を改善するために、適応動的パーティション(ADP)機構を考案した。
7つのベンチマークデータセットの実験は、最先端の方法論よりも提案されたUGRANの方が優れていることを示している。
コードはhttps://github.com/I2-Multimedia-Lab/UGRANでリリースされる。
関連論文リスト
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Inter- and intra-uncertainty based feature aggregation model for semi-supervised histopathology image segmentation [21.973620376753594]
学生モデルにおける階層的予測の不確実性(不確実性)と画像予測不確実性(不確実性)は,既存の手法では十分に活用されていない。
本研究では,教師・学生アーキテクチャにおける不整合度と不整合度を計測・制約する新しい不整合正規化手法を提案する。
また,セグメンテーションモデルとして擬似マスク誘導特徴集約(PG-FANet)を用いた2段階ネットワークを提案する。
論文 参考訳(メタデータ) (2024-03-19T14:32:21Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Spatial Attention-based Distribution Integration Network for Human Pose
Estimation [0.8052382324386398]
本研究では,空間アテンションに基づく分布統合ネットワーク(SADI-NET)を提案する。
我々のネットワークは、受容強化モジュール(RFM)、空間融合モジュール(SFM)、分散学習モジュール(DLM)の3つの効率的なモデルで構成されている。
我々のモデルは、MPIIテストデータセットで920.10%の精度を得、既存のモデルよりも大幅に改善され、最先端のパフォーマンスが確立された。
論文 参考訳(メタデータ) (2023-11-09T12:43:01Z) - Mutual Information-calibrated Conformal Feature Fusion for
Uncertainty-Aware Multimodal 3D Object Detection at the Edge [1.7898305876314982]
3次元(3D)物体検出は、重要なロボティクスの操作であり、大きな進歩を遂げている。
本研究は,共形推論の原理と情報理論測度を統合し,モンテカルロ自由な不確実性推定を行う。
このフレームワークは、KITTIの3Dオブジェクト検出ベンチマークにおいて、不確実性に気付かない類似のメソッドと同等またはより良いパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-09-18T09:02:44Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Boundary-semantic collaborative guidance network with dual-stream
feedback mechanism for salient object detection in optical remote sensing
imagery [22.21644705244091]
二重ストリームフィードバック機構を備えた境界意味協調誘導ネットワーク(BSCGNet)を提案する。
BSCGNetは、近年提案されている17の最先端(SOTA)アプローチよりも優れた、挑戦的なシナリオにおいて、明確なアドバンテージを示している。
論文 参考訳(メタデータ) (2023-03-06T03:36:06Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。