論文の概要: Inter- and intra-uncertainty based feature aggregation model for semi-supervised histopathology image segmentation
- arxiv url: http://arxiv.org/abs/2403.12767v1
- Date: Tue, 19 Mar 2024 14:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:53:54.732749
- Title: Inter- and intra-uncertainty based feature aggregation model for semi-supervised histopathology image segmentation
- Title(参考訳): 半教師付き病理像分割のための不確実性内特徴集約モデル
- Authors: Qiangguo Jin, Hui Cui, Changming Sun, Yang Song, Jiangbin Zheng, Leilei Cao, Leyi Wei, Ran Su,
- Abstract要約: 学生モデルにおける階層的予測の不確実性(不確実性)と画像予測不確実性(不確実性)は,既存の手法では十分に活用されていない。
本研究では,教師・学生アーキテクチャにおける不整合度と不整合度を計測・制約する新しい不整合正規化手法を提案する。
また,セグメンテーションモデルとして擬似マスク誘導特徴集約(PG-FANet)を用いた2段階ネットワークを提案する。
- 参考スコア(独自算出の注目度): 21.973620376753594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acquiring pixel-level annotations is often limited in applications such as histology studies that require domain expertise. Various semi-supervised learning approaches have been developed to work with limited ground truth annotations, such as the popular teacher-student models. However, hierarchical prediction uncertainty within the student model (intra-uncertainty) and image prediction uncertainty (inter-uncertainty) have not been fully utilized by existing methods. To address these issues, we first propose a novel inter- and intra-uncertainty regularization method to measure and constrain both inter- and intra-inconsistencies in the teacher-student architecture. We also propose a new two-stage network with pseudo-mask guided feature aggregation (PG-FANet) as the segmentation model. The two-stage structure complements with the uncertainty regularization strategy to avoid introducing extra modules in solving uncertainties and the aggregation mechanisms enable multi-scale and multi-stage feature integration. Comprehensive experimental results over the MoNuSeg and CRAG datasets show that our PG-FANet outperforms other state-of-the-art methods and our semi-supervised learning framework yields competitive performance with a limited amount of labeled data.
- Abstract(参考訳): ピクセルレベルのアノテーションを取得することは、しばしばドメインの専門知識を必要とする組織学研究のような応用に限られる。
教師-学生モデルのような、限られた真実のアノテーションを扱うための、様々な半教師付き学習アプローチが開発されている。
しかし,学生モデルにおける階層的予測の不確実性(不確実性)と画像予測の不確実性(不確実性)は,既存の手法では十分に活用されていない。
これらの課題に対処するために,教師学生アーキテクチャにおける不整合度と不整合度の両方を計測・制約する,新しい不確実性内正規化手法を提案する。
また,セグメンテーションモデルとして擬似マスク誘導特徴集約(PG-FANet)を用いた2段階ネットワークを提案する。
2段階構造は不確実性解決における余分なモジュールの導入を避けるために不確実性正規化戦略を補完し、アグリゲーション機構はマルチスケールおよびマルチステージの機能統合を可能にする。
MoNuSegおよびCRAGデータセットに対する総合的な実験結果から、PG-FANetは他の最先端の手法よりも優れており、半教師付き学習フレームワークはラベル付きデータの限られた量で競合性能が得られることが示された。
関連論文リスト
- Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning [1.5233179662962222]
pubic symphysis and fetal head (PSFH) の分節は、労働の進行をモニターし、潜在的に引き起こされる合併症を特定するための重要なステップである。
従来の半教師付き学習アプローチは、主に畳み込みニューラルネットワーク(CNN)に基づく統合ネットワークモデルを利用する。
CNN と Transformer を組み合わせた新しいフレームワークである Dual-Student and Teacher Combining CNN (DSTCT) を導入する。
論文 参考訳(メタデータ) (2024-09-11T00:57:31Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Consistency-Based Semi-supervised Evidential Active Learning for
Diagnostic Radiograph Classification [2.3545156585418328]
CSEAL(Consistency-based Semi-supervised Evidential Active Learning)フレームワークについて紹介する。
我々は、証拠理論と主観的論理に基づく予測の不確実性を利用して、エンドツーエンドの統合アプローチを開発する。
本手法は, ラベル付きサンプルを少なくして, より稀な異常の精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-09-05T09:28:31Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
近年では、FSS ( few-shot segmentation) が広く開発されている。
本稿では,問題を緩和するための新鮮で直接的な知見を提案する。
提案されたアプローチのユニークな性質を踏まえて、より現実的で挑戦的な設定にまで拡張する。
論文 参考訳(メタデータ) (2022-03-15T03:08:27Z) - Revisiting Deep Semi-supervised Learning: An Empirical Distribution
Alignment Framework and Its Generalization Bound [97.93945601881407]
経験分布アライメントによる半教師あり学習(SLEDA)と呼ばれる深層半教師あり学習フレームワークを提案する。
ラベル付きデータに対するトレーニング誤差を最小化することにより,半教師付き学習の一般化誤差を効果的にバウンドできることを示す。
新しい枠組みと理論的境界に基づいて、Augmented Distribution Alignment Network(ADA-Net)と呼ばれるシンプルで効果的な深層半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2022-03-13T11:59:52Z) - On the pitfalls of entropy-based uncertainty for multi-class
semi-supervised segmentation [8.464487190628395]
半教師付き学習は、限られた監督で深層モデルを訓練するための魅力的な戦略として現れてきた。
本稿では,この戦略がマルチクラスコンテキストにおける最適以下の結果をもたらすことを実証する。
本稿では,クラス間の重なり合いを考慮に入れた分散距離に基づいて,マルチクラス設定における不確実性を計算する方法を提案する。
論文 参考訳(メタデータ) (2022-03-07T18:35:17Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
半教師型医用画像セグメンテーションにおいて,ラベルのないハード領域を活用するための新しい相互整合性ネットワーク(MC-Net+)を提案する。
MC-Net+モデルは、限られたアノテーションで訓練された深いモデルは、非常に不確実で容易に分類された予測を出力する傾向があるという観察に動機づけられている。
MC-Net+のセグメンテーション結果と、最先端の5つの半教師付きアプローチを3つの公開医療データセットで比較した。
論文 参考訳(メタデータ) (2021-09-21T04:47:42Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - D-LEMA: Deep Learning Ensembles from Multiple Annotations -- Application
to Skin Lesion Segmentation [14.266037264648533]
画像に対するアノテーションの意見のコレクションを活用することは、ゴールド基準を推定する興味深い方法です。
深層モデル学習時のアノテーションの不一致に対処する手法を提案する。
論文 参考訳(メタデータ) (2020-12-14T01:51:22Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。