論文の概要: SPOT: Spatio-Temporal Pattern Mining and Optimization for Load Consolidation in Freight Transportation Networks
- arxiv url: http://arxiv.org/abs/2504.09680v1
- Date: Sun, 13 Apr 2025 18:14:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-23 03:22:59.594746
- Title: SPOT: Spatio-Temporal Pattern Mining and Optimization for Load Consolidation in Freight Transportation Networks
- Title(参考訳): SPOT:貨物輸送網における時空間パターンマイニングと負荷統合の最適化
- Authors: Sikai Cheng, Amira Hijazi, Jeren Konak, Alan Erera, Pascal Van Hentenryck,
- Abstract要約: 効率的な負荷統合計画は、交通管理プロセスとの整合性を確保するために慎重に選択された統合ポイントに依存している。
従来の最適化に基づくアプローチは正確な解決策を提供するが、その計算複雑性は大規模インスタンスでは実用的ではない。
この研究は、機械学習(ML)の利点と負荷統合の最適化を統合するエンドツーエンドアプローチであるSPOTを提案する。
- 参考スコア(独自算出の注目度): 13.121155604809372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Freight consolidation has significant potential to reduce transportation costs and mitigate congestion and pollution. An effective load consolidation plan relies on carefully chosen consolidation points to ensure alignment with existing transportation management processes, such as driver scheduling, personnel planning, and terminal operations. This complexity represents a significant challenge when searching for optimal consolidation strategies. Traditional optimization-based methods provide exact solutions, but their computational complexity makes them impractical for large-scale instances and they fail to leverage historical data. Machine learning-based approaches address these issues but often ignore operational constraints, leading to infeasible consolidation plans. This work proposes SPOT, an end-to-end approach that integrates the benefits of machine learning (ML) and optimization for load consolidation. The ML component plays a key role in the planning phase by identifying the consolidation points through spatio-temporal clustering and constrained frequent itemset mining, while the optimization selects the most cost-effective feasible consolidation routes for a given operational day. Extensive experiments conducted on industrial load data demonstrate that SPOT significantly reduces travel distance and transportation costs (by about 50% on large terminals) compared to the existing industry-standard load planning strategy and a neighborhood-based heuristic. Moreover, the ML component provides valuable tactical-level insights by identifying frequently recurring consolidation opportunities that guide proactive planning. In addition, SPOT is computationally efficient and can be easily scaled to accommodate large transportation networks.
- Abstract(参考訳): 軽量化は輸送コストを削減し、渋滞や汚染を緩和する大きな可能性を秘めている。
効率的な負荷統合計画は、ドライバーのスケジューリング、人事計画、ターミナルオペレーションなどの既存の交通管理プロセスと整合性を確保するために、慎重に選択された統合ポイントに依存している。
この複雑さは、最適な統合戦略を探す際に重要な課題である。
従来の最適化に基づく手法は正確な解を提供するが、その計算複雑性により大規模インスタンスでは実用的ではなく、過去のデータを活用できない。
機械学習ベースのアプローチはこれらの問題に対処するが、しばしば運用上の制約を無視し、実現不可能な統合計画につながる。
この研究は、機械学習(ML)の利点と負荷統合の最適化を統合するエンドツーエンドアプローチであるSPOTを提案する。
MLコンポーネントは、時空間クラスタリングと制約された頻繁なアイテムセットマイニングを通じて統合ポイントを識別し、所定の運用日において最も費用対効果の高い統合ルートを選択することにより、計画段階で重要な役割を果たす。
産業負荷データに基づく大規模な実験により、SPOTは既存の産業標準負荷計画戦略や近隣のヒューリスティックと比べ、旅行距離と輸送コスト(大型端末で約50%削減)を著しく低減することが示された。
さらに、MLコンポーネントは、アクティブプランニングをガイドする頻繁な統合機会を特定することによって、貴重な戦術レベルの洞察を提供する。
さらに、SPOTは計算効率が良く、大規模な輸送ネットワークに対応するために容易に拡張できる。
関連論文リスト
- Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC)は,限られたラベル付きサンプルを用いたリモートセンシング画像の分類の課題を示す。
理想的なプラトン表現空間を構築することを目的とした,OTAT(Optimal Transport Adapter Tuning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T07:04:24Z) - CoLLMLight: Cooperative Large Language Model Agents for Network-Wide Traffic Signal Control [7.0964925117958515]
交通信号制御(TSC)は,交通流の最適化と混雑緩和によって都市交通管理において重要な役割を担っている。
既存のアプローチでは、エージェント間の調整に必要な問題に対処できない。
TSCのための協調LLMエージェントフレームワークであるCoLLMLightを提案する。
論文 参考訳(メタデータ) (2025-03-14T15:40:39Z) - Deep Reinforcement Learning for Traveling Purchaser Problems [63.37136587778153]
旅行購入問題(TPP)は幅広いアプリケーションにおいて重要な最適化問題である。
本稿では,ルート構築と購入計画を個別に扱う,深層強化学習(DRL)に基づく新しいアプローチを提案する。
メタラーニング戦略を導入することで、大規模なTPPインスタンス上で安定してポリシーネットワークをトレーニングすることができる。
論文 参考訳(メタデータ) (2024-04-03T05:32:10Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sysは、条件付き独立性(CI)制約下でのデータ修復に最適な輸送理論を利用するフレームワークである。
我々はSinkhornの行列スケーリングアルゴリズムにインスパイアされた反復アルゴリズムを開発し、高次元および大規模データを効率的に処理する。
論文 参考訳(メタデータ) (2024-03-04T18:23:55Z) - Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks [14.972807276002465]
本稿では,フローと負荷計画の課題を共同で検討するアウトバウンド負荷計画問題(OLPP)について考察する。
本研究の目的は,ネットワーク上の端末で意思決定を行う計画立案者に対して,意思決定支援ツールを開発することである。
論文 参考訳(メタデータ) (2023-07-08T21:28:20Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
電気自動車(EV)は配電ネットワークを著しくストレスし、性能を劣化させ、安定性を損なう可能性がある。
現代の電力網は、EV充電スケジューリングをスケーラブルで効率的な方法で最適化できる、コーディネートまたはスマートな充電戦略を必要とする。
ネットワークの利用可能な電力容量とステーションの占有限度を考慮しつつ、EV利用者の総福祉利益を最大化する時間結合二元最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-05-18T14:03:47Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
フレキシブルなジョブショップスケジューリング問題(FJSP)では、複数のマシンで操作を処理でき、操作とマシンの間の複雑な関係が生じる。
近年, 深層強化学習(DRL)を用いて, FJSP解決のための優先派遣規則(PDR)を学習している。
本稿では,Deep機能抽出のための自己注意モデルと,スケーラブルな意思決定のためのDRLの利点を生かした,エンドツーエンド学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-09T01:35:48Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
フロゼットボン2021ローランで提唱された低ランク最適輸送(LOT)アプローチ
LOTは興味のある性質と比較した場合、エントロピー正則化の正当な候補と見なされる。
本稿では,これらの領域のそれぞれを対象とし,計算OTにおける低ランクアプローチの影響を補強する。
論文 参考訳(メタデータ) (2022-05-24T20:51:37Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
公共交通機関の計画は、多くのステップを含む非常に複雑なプロセスである。
乗客の観点からの堅牢性の統合により、作業はさらに困難になる。
本稿では,機械学習の手法を用いたシナリオベースロバストネス近似の新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-10T05:52:56Z) - A Modular and Transferable Reinforcement Learning Framework for the
Fleet Rebalancing Problem [2.299872239734834]
モデルフリー強化学習(RL)に基づく艦隊再バランスのためのモジュラーフレームワークを提案する。
動作領域のグリッド上の分布としてRL状態とアクション空間を定式化し,フレームワークをスケーラブルにする。
実世界の旅行データとネットワークデータを用いた数値実験は、このアプローチがベースライン法よりもいくつかの異なる利点があることを実証している。
論文 参考訳(メタデータ) (2021-05-27T16:32:28Z) - Unbalanced minibatch Optimal Transport; applications to Domain
Adaptation [8.889304968879163]
最適輸送距離は、非パラメトリック確率分布を比較するための機械学習の能力に多くの応用を見出した。
我々は、同じミニバッチ戦略と不均衡な最適輸送が組み合わさって、より堅牢な振る舞いをもたらすと論じる。
実験により, 領域適応に関する課題において, 不均衡な最適移動の利用は, 最近のベースラインと競合するか, はるかに良好な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-05T11:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。