Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
- URL: http://arxiv.org/abs/2504.09708v1
- Date: Sun, 13 Apr 2025 20:06:49 GMT
- Title: Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
- Authors: Gavin Zhang, Salar Fattahi, Richard Y. Zhang,
- Abstract summary: In practical instances of nonspecified matrix factorization, the rank of the true solutionrstar$ is often unknown, so the rankr$ of the model can be singular as $r>rstar$.<n>We propose an inexpensive suber for matrix sensing variant non matrix factorization that restores the convergence factor back to linear, even in agnosticized case.<n>Our numerical experiments find that PrecGD works equally well in restoring the convergence of other variants non matrix factorization.
- Score: 19.32160757444549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical instances of nonconvex matrix factorization, the rank of the true solution $r^{\star}$ is often unknown, so the rank $r$ of the model can be overspecified as $r>r^{\star}$. This over-parameterized regime of matrix factorization significantly slows down the convergence of local search algorithms, from a linear rate with $r=r^{\star}$ to a sublinear rate when $r>r^{\star}$. We propose an inexpensive preconditioner for the matrix sensing variant of nonconvex matrix factorization that restores the convergence rate of gradient descent back to linear, even in the over-parameterized case, while also making it agnostic to possible ill-conditioning in the ground truth. Classical gradient descent in a neighborhood of the solution slows down due to the need for the model matrix factor to become singular. Our key result is that this singularity can be corrected by $\ell_{2}$ regularization with a specific range of values for the damping parameter. In fact, a good damping parameter can be inexpensively estimated from the current iterate. The resulting algorithm, which we call preconditioned gradient descent or PrecGD, is stable under noise, and converges linearly to an information theoretically optimal error bound. Our numerical experiments find that PrecGD works equally well in restoring the linear convergence of other variants of nonconvex matrix factorization in the over-parameterized regime.
Related papers
- Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent [17.73720530889677]
Preconditioning methods have been proposed to accelerate the convergence of matrix sensing problem.<n>We propose an alternating preconditioned descent (APGD) algorithm, which alternately updates the two factor parameter.<n>We theoretically prove that APGD achieves near-optimal convergence at a linear rate, starting from arbitrary randoms.
arXiv Detail & Related papers (2025-02-01T15:44:39Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Asymmetric matrix sensing by gradient descent with small random
initialization [0.8611782340880084]
We study the problem of reconstructing a low-rank matrix from a few linear measurements.
Our key contribution is introducing a continuous gradient flow equation that we call the $texted gradient flow$.
arXiv Detail & Related papers (2023-09-04T20:23:35Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Neural incomplete factorization: learning preconditioners for the conjugate gradient method [2.899792823251184]
We develop a data-driven approach to accelerate the generation of effective preconditioners.
We replace the typically hand-engineered preconditioners by the output of graph neural networks.
Our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF)
arXiv Detail & Related papers (2023-05-25T11:45:46Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix
Completion via Gradient Descent [22.851500417035947]
Factorization-based gradient descent is a scalable and efficient algorithm for solving the factorrank matrix completion.
We show that gradient descent enjoys fast convergence to estimate a solution of the global nature problem.
arXiv Detail & Related papers (2021-02-04T03:41:54Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled
Gradient Descent [34.0533596121548]
Low-rank matrix estimation converges convex problem that finds numerous applications in signal processing, machine learning and imaging science.
We show that ScaledGD achieves the best of the best in terms of the number of the low-rank matrix.
Our analysis is also applicable to general loss that are similar to low-rank gradient descent.
arXiv Detail & Related papers (2020-05-18T17:17:16Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.