Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent
- URL: http://arxiv.org/abs/2502.00463v2
- Date: Thu, 06 Feb 2025 14:32:10 GMT
- Title: Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent
- Authors: Zhiyu Liu, Zhi Han, Yandong Tang, Hai Zhang, Shaojie Tang, Yao Wang,
- Abstract summary: Preconditioning methods have been proposed to accelerate the convergence of matrix sensing problem.
We propose an alternating preconditioned descent (APGD) algorithm, which alternately updates the two factor parameter.
We theoretically prove that APGD achieves near-optimal convergence at a linear rate, starting from arbitrary randoms.
- Score: 17.73720530889677
- License:
- Abstract: We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank $r$ is larger than the true rank $r_\star$. Specifically, our main objective is to recover a matrix $ X_\star \in \mathbb{R}^{n_1 \times n_2} $ with rank $ r_\star $ from noisy measurements using an over-parameterized factorized form $ LR^\top $, where $ L \in \mathbb{R}^{n_1 \times r}, \, R \in \mathbb{R}^{n_2 \times r} $ and $ \min\{n_1, n_2\} \ge r > r_\star $, with the true rank $ r_\star $ being unknown. Recently, preconditioning methods have been proposed to accelerate the convergence of matrix sensing problem compared to vanilla gradient descent, incorporating preconditioning terms $ (L^\top L + \lambda I)^{-1} $ and $ (R^\top R + \lambda I)^{-1} $ into the original gradient. However, these methods require careful tuning of the damping parameter $\lambda$ and are sensitive to initial points and step size. To address these limitations, we propose the alternating preconditioned gradient descent (APGD) algorithm, which alternately updates the two factor matrices, eliminating the need for the damping parameter and enabling faster convergence with larger step sizes. We theoretically prove that APGD achieves near-optimal error convergence at a linear rate, starting from arbitrary random initializations. Through extensive experiments, we validate our theoretical results and demonstrate that APGD outperforms other methods, achieving the fastest convergence rate. Notably, both our theoretical analysis and experimental results illustrate that APGD does not rely on the initialization procedure, making it more practical and versatile.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Convergence of Gradient Descent with Small Initialization for
Unregularized Matrix Completion [21.846732043706318]
We show that the vanilla gradient descent provably converges to the ground truth $rmXstar$ without requiring any explicit regularization.
Surprisingly, neither the convergence rate nor the final accuracy depends on the over- parameterized search rank $r'$, and they are only governed by the true rank $r$.
arXiv Detail & Related papers (2024-02-09T19:39:23Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
We study the generalized low-rank matrix bandit problem, proposed in citelu2021low under the Generalized Linear Model (GLM) framework.
To overcome the computational infeasibility and theoretical restrain of existing algorithms, we first propose the G-ESTT framework.
We show that G-ESTT can achieve the $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret while G-ESTS can achineve the $tildeO
arXiv Detail & Related papers (2024-01-14T14:14:19Z) - How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing:
The Curses of Symmetry and Initialization [46.55524654398093]
We show how over- parameterization changes the convergence behaviors of descent.
The goal is to recover an unknown low-rank ground-rank ground-truth matrix from near-isotropic linear measurements.
We propose a novel method that only modifies one step of GD and obtains a convergence rate independent of $alpha$.
arXiv Detail & Related papers (2023-10-03T03:34:22Z) - The Power of Preconditioning in Overparameterized Low-Rank Matrix
Sensing [42.905196856926615]
$textsfScaledGD($lambda$)$ is a preconditioned gradient descent method to tackle the low-rank matrix sensing problem.
We show that $textsfScaledGD($lambda$)$ converges to the true low-rank matrix at a constant linear rate after a small number of iterations.
arXiv Detail & Related papers (2023-02-02T16:13:27Z) - Accelerated Single-Call Methods for Constrained Min-Max Optimization [5.266784779001398]
Existing methods either require two gradient calls or two projections in each iteration, which may costly in some applications.
In this paper, we first show that a variant of the Optimistic Gradient (RGOG) has a rich set of non-comonrate min-max convergence rate problems.
Our convergence rates hold for standard measures such as and the natural and the natural.
arXiv Detail & Related papers (2022-10-06T17:50:42Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
We show the first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sampling.
Results on Open GymAI continuous control tasks.
arXiv Detail & Related papers (2022-02-28T15:16:23Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.