HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
- URL: http://arxiv.org/abs/2504.09876v2
- Date: Thu, 17 Apr 2025 01:42:05 GMT
- Title: HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
- Authors: Tran Quoc Khanh Le, Nguyen Lan Vi Vu, Ha-Hieu Pham, Xuan-Loc Huynh, Tien-Huy Nguyen, Minh Huu Nhat Le, Quan Nguyen, Hien D. Nguyen,
- Abstract summary: A novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture.<n>The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning.
- Score: 2.964206587462833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transvaginal ultrasound is a critical imaging modality for evaluating cervical anatomy and detecting physiological changes. However, accurate segmentation of cervical structures remains challenging due to low contrast, shadow artifacts, and indistinct boundaries. While convolutional neural networks (CNNs) have demonstrated efficacy in medical image segmentation, their reliance on large-scale annotated datasets presents a significant limitation in clinical ultrasound imaging. Semi-supervised learning (SSL) offers a potential solution by utilizing unlabeled data, yet existing teacher-student frameworks often encounter confirmation bias and high computational costs. In this paper, a novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture. The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning. The proposed approach reduces model complexity while enhancing generalization. Experiments on fetal ultrasound datasets, FUGC and PSFH, demonstrate competitive performance with reduced computational overhead compared to multi-teacher models.
Related papers
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
CMSwinKAN is a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.
We introduce a soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications.
Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
We propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation.
Unlike previous methods that rely solely on limited labeled data, our approach integrates uncertainty weighted vessel unveiling module and domain adversarial learning.
We validate our approach on public datasets and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics.
arXiv Detail & Related papers (2024-11-14T02:40:34Z) - Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning [1.5233179662962222]
The segmentation of the pubic symphysis and fetal head (PSFH) constitutes a pivotal step in monitoring labor progression and identifying potential delivery complications.
Traditional semi-supervised learning approaches primarily utilize a unified network model based on Convolutional Neural Networks (CNNs)
We introduce a novel framework, the Dual-Student and Teacher Combining CNN and Transformer (DSTCT)
arXiv Detail & Related papers (2024-09-11T00:57:31Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - Ultrasound Nodule Segmentation Using Asymmetric Learning with Simple Clinical Annotation [25.459627476201646]
We suggest using simple aspect ratio annotations directly from ultrasound clinical diagnoses for automated nodule segmentation.
An asymmetric learning framework is developed by extending the aspect ratio annotations with two types of pseudo labels.
Experiments on two clinically collected ultrasound datasets (thyroid and breast) demonstrate the superior performance of our proposed method.
arXiv Detail & Related papers (2024-04-23T09:07:04Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
Semi-supervised medical image segmentation offers a promising solution for large-scale medical image analysis.
This paper proposes a cross-supervised learning framework based on dual classifiers (DC-Net)
Experiments on LA and Pancreas-CT dataset illustrate that DC-Net outperforms other state-of-the-art methods for semi-supervised segmentation.
arXiv Detail & Related papers (2023-05-25T16:23:39Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration.
Deep learning has turned into a prominent class of machine learning programs in computer vision.
This study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group.
arXiv Detail & Related papers (2023-02-21T18:16:20Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
arXiv Detail & Related papers (2020-10-23T07:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.